PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy of drying selected products using a moisture analyzer method based on infrared radiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Trueness and precision of a method for determining the water content (%) of food and chemical products based on infrared radiation with a wavelength in the range (2.70÷7.21 μm) was evaluated. The most accurate measurements for food products were obtained when the heat source was a radiant heater with a radiation wavelength of 7.21 μm, a trueness deviation of 0.01%. When heated with radiation with wavelengths (from 3.32 μm to 7.21 μm), the trueness of the measurement ranged (0.03%÷0.13%) for chemical products. The shortest analysis time for food products was found when the analysis was carried out using an IR source with a wavelength of 7.21 μm, while for chemical products, a heat source with a wavelength of 2.70÷7.21 μm was optimal. According to the results of the analysis, the use of IR radiation with a wavelength range of 3.32÷7.21 μm is an alternative for accurate measurements.
Rocznik
Strony
305--321
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wzory
Twórcy
  • Centre for Metrology Research and Certification, Radwag Wagi Elektroniczne, Poland
  • Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Bibliografia
  • [1] Menego, M. V., Dornelles, S., Bairros, F., Branco, C. S., & Pesamosca Facco, E. M. (2020). Hydrolytic and oxidative rancidity in cheese of serra gaucha and its relation to nutritional and microbiological parameters. Disciplinarum Scientia. Série: Ciências da Saúde, Santa Maria, 21(1), 199-211. https://doi.org/10.37777/dscs.v21n1-017
  • [2] Bhatta, S., Stevanovic Janezic, T., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 87. https://doi.org/10.3390/foods9010087
  • [3] Ochmian, I., Figiel-Kroczyńska, & M., Lachowicz, S. (2020). The quality of freeze-dried and re-hydrated blueberries depending on their size and preparation for freeze-drying. Acta Universitatis Cinbinesis, Series E: Food Technology, 24(1). https://doi.org/10.2478/aucft-2020-0006
  • [4] Kipcak, A. S., & İsmail, O. (2021). Microwave drying of fish, chicken and beef samples. Journal of Food Science and Technology, 58(1), 281-291. https://doi.org/10.1007/s13197-020-04540-0
  • [5] Azadbakht, M., Vahedi Torshizi, M., Noshad, F., & Rokhbin, A. (2020). Energy and exergy analyses in microwave drying of orange slices. Iranian Food Science and Technology Research Journal, 16(3), 1-13. https://doi.org/10.22067/IFSTRJ.V16I3.81125
  • [6] Changrue, V., Raghavan, V.G.S., Gariépy, Y., & Orsat, V. (2007). Microwave vacuum dryer setup and preliminary drying studies on strawberries carrots. Journal of Microwave Power and Electromagnetic Energy: A Publication of the International Microwave Power Institute, 41, 36-44. https://doi.org/10.1080/08327823.2006.11688555
  • [7] Guo, W., Lin, B., Liu, D., & Zhu, X. (2017). A novel technique on determining water content in milk using radio-frequency/microwave dielectric spectroscopy and chemometrics. Food Analytical Methods, 10(12), 3781-3789. https://doi.org/10.1007/s12161-017-0946-7
  • [8] Onwude, D. J., Hashim, N., Janius, R., Abdan, K., Chen, G., & Oladejo, A. O. (2017). Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies, 43, 223-238. https://doi.org/10.1016/j.ifset.2017.08.010
  • [9] Wojdyło, A., Figiel, A., & Oszmiański, J. (2009). Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agricultural and Food Chemistry, 57(4), 1337-1343. https://doi.org/10.1021/jf802507j
  • [10] Ghamari, S., Goli, H., & Mirahmadi, F. (2016). Anthocyanin Changes in Hot Air Drying of Strawberry. Advances in Bioresearch, 7(4), 92-95.
  • [11] Ansari, S., Maftoon-Azad, N., Farahnaky, A., Hosseini, E., & Badii, F. (2014). Effect of moisture content on textural attributes of dried figs. International Agrophysics, 28(4), 403-412. https://doi.org/10.2478/intag-2014-0031
  • [12] Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2017). Recent advances in conventional drying of foods. Journal of Food Technology and Preservation, 1(1), 24-34.
  • [13] Bradley R. L. Jr., & Vanderwarn, M. A. (2001). Determination of moisture in cheese and cheese products. Journal of AOAC International, 84(2), 570-592. https://doi.org/10.1093/JAOAC/84.2.570
  • [14] Zhou, S. W. W. (2020). Carbon Footprint Measurement in Carbon Management for a Sustainable Environment, 25-67. Springer Cham. https://doi.org/10.1007/978-3-030-35062-8
  • [15] Zhang, P., Chang, Z., Wang, D., Blamo, B. J., & Li, W. (2017). Effect of water content on product distribution of base-catalyzed transesterification. Waste and Biomass Valorization, 8(1), 95-102. https://doi.org/10.1007/s12649-016-9584-3
  • [16] Ehsan, M., & Chowdhury, M.T.H. (2015). Production of biodiesel using alkaline based catalysts from waste cooking oil: a case study. Procedia Engineering, 105, 638-645. https://doi.org/10.1016/j.proeng.2015.05.042
  • [17] Fregolente, P. B. L., Fregolente, L. V., & Wolf Maciel, M. R. (2012). Water content in biodiesel, diesel, and biodiesel-diesel blends. J. Chem. Eng. Data, 57(6), 1817-1821. https://doi.org/10.1021/je300279c
  • [18] Saleh, S.H., & Tripp, C.P. (2020). A reagentless and rapid method to measure water content in oils. Talanta, 225, 121911. https://doi.org/10.1016/j.talanta.2020.121911
  • [19] Terjék, D. V., & Kókai, E. (2020). Measurement possibilities of water content in polyamide. In IOP Conference, Materials Science and Engineering, 903(1), 012014. https://doi.org/10.1088/1757-899X/903/1/012014
  • [20] Bogdanov, S. (2004). Quality and standards of pollen and beeswax. Apiacta, 38(11), 334-341.
  • [21] Chopra, S., Venkatesan, N., & Betageri, G. V. (2013). Formulation of lipid bearing pellets as a delivery system for poorly soluble drugs. International Journal of Pharmaceutics, 446(1-2), 136-144. https://doi.org/10.1016/j.ijpharm.2013.02.029
  • [22] Damayanti, D., Wulandari, Y.R., & Wu, H. S. (2020). Product Distribution of Chemical Product Using Catalytic Depolymerization of Lignin. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 432-453. https://doi.org/10.9767/bcrec.15.2.7249.432-453
  • [23] Ferrari, E., & Pessina, D. (2012). Measurement of cereal moisture content with an experimental acoustic device. Applied Engineering in Agriculture, 28(3), 441-446. https://doi.org/10.13031/2013.41483
  • [24] Szczęsna, T., Rybak-Chmielewska, H., Was, E., & Skubida, P. (2009). Water determination in bee products using the Karl Fischer titration method. Journal of Apicultural Science, 53(2), 49-56.
  • [25] Jurković, J. (2018). Water determination in samples with high sugar and protein content. Technologica Acta, 11(1), 45-50. https://hrcak.srce.hr/208289
  • [26] Isengard, H.D., Haschka, E., & Merkh, G. (2012). Development of a method for water determination in lactose. Food Chemistry, 132(4), 1660-1663. https://doi.org/10.1016/j.foodchem.2011.04.100
  • [27] Fan, M., & Brown, R.C. (2001). Comparison of the loss-on-ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash. Energy & Fuels, 15(6), 1414-1417. https://doi.org/10.1021/ef0100496
  • [28] Gomes, A., Correia, L., da Silva Simões, M., & Macêdo, R. (2007). Development of thermogravimetric method for quantitative determination of metronidazole. Journal of Thermal Analysis and Calorimetry, 88(2), 383-387. https://doi.org/10.1007/s10973-006-8007-2
  • [29] Kowalska, M., Janas, S., & Woźniak, M. (2018). Innovative application of the moisture analyser for determination of dry mass content of processed cheese. Heat and Mass Transfer, 54(10), 3071-3080. https://doi.org/10.1007/s00231-018-2358-7
  • [30] Rossa, C., Fernandes, P. M., & Pinto, A. (2015). Measuring foliar moisture content with a moisture analyser. Canadian Journal of Forest Research, 45, 776-781. https://doi.org/10.1139/cjfr-2014-0545
  • [31] Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109-116. https://doi.org/10.1016/j.foodchem.2016.09.103
  • [32] Huang, D., Yang, P., Tang, X., Luo, L., & Sunden, B. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765-777. https://doi.org/10.1016/j.tifs.2021.02.039
  • [33] Huang, Y., Lu, M., Wu, H., Zhao, T., Wu, P., & Cao, D. (2021). High drying temperature accelerates sunflower seed deterioration by regulating the fatty acid metabolism, glycometabolism, and abscisic acid/gibberellin balance. Frontiers in Plant Science, 12, 628251. https://doi.org/10.3389/fpls.2021.628251
  • [34] Doymaz, I. (2017). Application of infrared radiation on drying characteristics of eggplant slices. Latin American Applied Research, 47(1-2), 71-76. https://doi.org/10.52292/j.laar.2017.304
  • [35] Pekke, M. A., Pan, Z., Atungulu, G. G., Smith, G., & Thompson, J. F. (2013). Drying characteristics and quality of bananas under infrared radiation heating. International Journal of Agricultural and Biological Engineering, 6(3), 58-70. https://doi.org/10.25165/IJABE.V6I3.739
  • [36] Sahane, S.P., Gawande, A. P., & Dolas, R. T. (2020). A Review on Process Validation. International Journal of PharmaO2, 2(6), 0368-0376.
  • [37] Jindal, D., Kaur, H., Patil, R. K., & Patil, H. C. (2020). Validation-In pharmaceutical industry: Equipment validation: A brief review. Adesh University Journal of Medical Sciences & Research, 2(2), 94-98. https://doi.org/10.25258/ijpqa.11.3.6
  • [38] Peters, F. T., Drummer, O. H., & Musshoff, F. (2007). Validation of new methods. Forensic Science International, 165(2-3), 216-224. https://doi.org/10.1016/j.forsciint.2006.05.021
  • [39] Derrouiche, R., Neubert, G., Bouras, A., & Savino, M. (2010). B2B relationship management: a framework to explore the impact of collaboration. Production Planning & Control, 21(6), 528-546. https://doi.org/10.1080/09537287.2010.488932
  • [40] Shah, J., & Deshpande, V. (2015). Lean Six Sigma: An integrative approach of Lean and Six Sigma methodology. International Journal of Current Engineering and Technology, 5(6), 528-3534.
  • [41] Santos, M. B. (2020). The Integration of Six Sigma and Lean Manufacturing. In, F.P.G. Márquez, I.S. Ramirez, T. Bányai, P. Tamás (Eds.), Lean Six Sigma - Behind the Mask. IntechOpen. https://doi.org/10.5772/intechopen.78826
  • [42] Vişanu, V. (2018). Peaches convective drying. Journal of Engineering Science, 25(3), 100-110. https://doi.org/10.5281/zenodo.2557337
  • [43] Tulej, W., & Głowacki, S. (2022). Modeling of the Drying Process of Apple Pomace. Applied Sciences, 12(3), 1434. https://doi.org/10.3390/app12031434
  • [44] Li, B., Zeng, Z., Zhang, X., & Zhang, Y. (2021). Study on the variable-temperature drying process of corn drying in an industrial corn-drying system equipped with a self-adaptive control heat exchanger. Applied Sciences, 11(6), 2772. https://doi.org/10.3390/app11062772
  • [45] Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A. (2008). Infrared Heating in Food Processing: An Overview. Comprehensive Reviews in Food Science and Food Safety, 7(1) 2-13. https://doi.org/10.1111/j.1541-4337.2007.00024.x
  • [46] Yadav, G., Gupta, N., Sood, M., Anjum, N., & Chib, A. (2020). Infrared heating and its application in food processing. The Pharma Innovation Journal, 9(2), 142-151.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1e37c5f-48e8-4877-ae47-92c248a08a44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.