PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The relationship between the granulometric composition of grassland soils and their content of mineral nitrogen and organic carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study analysed the relationship between the granulometric composition of grassland soils as determined by laser diffraction and their content of mineral forms of nitrogen and organic carbon. The content of mineral forms of nitrogen (NO3-N and NH4-N) in soil samples - after their extraction with 1% solution K2SO4 , was determined by flow colourimetry. Soil organic carbon content was determined using the Tyurin method. The study examined soil samples collected from 169 control and measurement sites located in different regions of Poland in terms of conditions for agricultural production. Statistical analyses of the research results showed that the grain size of grassland soils had a significant effect on their ammonium nitrogen content but not on their nitrate nitrogen and organic carbon content. In this respect, it was found that there was a positive correlation between the share of the sand fraction and the content of ammonium nitrogen in soils and an opposite relation between the share of coarse silt, fine silt and clay and the content of the aforementioned component. Results of the analyses differ considerably from the results of studies by other authors on the influence of soil grain size distribution on the content of mineral nitrogen and organic carbon in soils based on classical methods of measurements of soil particle size distribution. There is a need to develop solutions to convert and compare results obtained by laser diffraction and standard methods.
Wydawca
Rocznik
Tom
Strony
69--77
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, 05-090, Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, 05-090, Raszyn, Poland
Bibliografia
  • Allison, F.E. (ed.) (1973) “The organic matter content of soils,” in Soil organic matter and its role in crop production. Ser. Developments in Soil Science. Amsterdam-London-New York: Elsevier Scientific Publishing Company, pp. 120–138. Available at: https://doi.org/10.1016/S0166-2481(08)70565-8.
  • Arbačauskas, J. et al. (2018) “Mineral nitrogen in soils of Lithuania’s agricultural land: Comparison of oven-dried and field-moist samples,” Zemdirbyste-Agriculture, 105(2), pp. 99‒104. Available at: https://doi.org/10.13080/z-a.2018.105.013.
  • Augustin, C. and Cihacek, L.J. (2016) “Relationships between soil carbon and soil texture in the Northern Great Plains,” Soil Science, 181(8), pp. 386–392. Available at: https://doi.org/10.1097/SS.0000000000000173.
  • Azlan, A. et al. (2012) “Correlation between soil organic matter, total organic matter and water content with climate and depths of soil at different land use in Kelantan, Malaysia,” Journal of Applied Sciences and Environmental Management, 16(4), pp. 353–358. Available at: https://www.ajol.info/index.php/jasem/article/view/90982 (Accessed: March 20, 2022).
  • Bai, X. et al. (2021) “Applicability of laser diffraction method for soil particle size distribution analysis of five soil orders in the water erosion region of China,” Journal of Soil and Water Conservation, 76(4), pp. 303–316. Available at: https://doi.org/10.2489/jswc.2021.00009.
  • Bechtold, J.S. and Naiman, R.J. (2006) “Soil texture and nitro gen mineralization potential across a riparian toposequence in a semi-arid savanna,” Soil Biology and Biochemistry, 38(6), pp. 1325–1333. Available at: https://doi.org/10.1016/j.soilbio.2005.09.028.
  • Cambouris, A.N. et al. (2016) “Corn yield components response to nitrogen fertilizer as a function of soil texture,” Canadian Journal of Soil Science, 96(4), pp. 386–399. Available at: https://doi.org/10.1139/cjss-2015-0134.
  • Campbell, J.R. (2003) “Limitations in the laser particle sizing of soils,” in I.C. Roach (ed.) Advances in regolith. Canberra: CRC LEME, pp. 38–42. Available at: http://crcleme.org.au/Pubs/Advancesinregolith/Campbell.pdf (Accessed: February 21, 2022).
  • Cui, J., Askari, M.S. and Holden, N.M. (2015) “Grassland soil carbon and nitrogen stocks under temperate livestock grazing,” Soil Research, 53(50) pp. 485–493. Available at: https://doi.org/10.1071/SR14252.
  • Fajer, M. (2014) Przewodnik do ćwiczeń z gleboznawstwa dla studentów I roku geografii [A guide to soil science exercises for first-year geography students]. Katowice: Wydawnictwo Uniwersytetu Śląskiego.
  • Fan, X. et al. (2021) “The influence of soil particle size distribution and clay minerals on ammonium nitrogen in weathered crust elution-deposited rare earth tailing,” Ecotoxicology and Environmental Safety, 208, 111663. Available at: https://doi.org/10.1016/j.ecoenv.2020.111663.
  • Fotyma, M., Kęsik, K. and Pietruch, C. (2010) „Azot mineralny w glebach jako wskaźnik potrzeb nawozowych roślin i stanu czystości wód glebowo-gruntowych [Mineral nitrogen in soils as an indicator of the fertilization needs of plants and the cleanliness of soil and groundwater],” Nawozy i Nawożenie (Fertilizers and Fertilizaton), 38 pp. 5–80.
  • Gabryszuk, M., Barszczewski, J. and Wróbel, B. (2021) “Characteristics of grasslands and their use in Poland,” Journal of Water and Land Development, Vol. 51, pp. 243–249. Available at: https://doi.org/10.24425/jwld.2021.139035.
  • Goodwin, L.D. and Leech, N.L. (2006) “Understanding correlation: Factors that affect the size of r,” The Journal of Experimental Education, 74(3), pp. 249–266. Available at: https://doi.org/10.3200/JEXE.74.3.249-266.
  • Gorączko, A. and Topoliński, S. (2018) „Wpływ kształtu cząstek ilastych na wyniki analiz granulometrycznych gruntów spoistych [Influence of shape anisotropy on the results of grain size analysis of the clayey soils],” Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska, 27(2), pp. 142–151. Available at: https://doi.org/10.22630/PNIKS.2018.27.2.14.
  • GUS (2021) Rolnictwo w 2020 roku (+ archiwum) [Agriculture in 2020 (+ archive)]. Warszawa: Główny Urząd Statystyczny. Available at: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/rolnictwo/rolnictwo-w-2020-roku,3,17.html (Accessed: February 21, 2022).
  • Hassink, J. (1997) “The capacity of soils to preserve organic C and N by their association with clay and silt particles”, Plant and Soil, 191 (1), pp. 77–87. Available at: https://doi.org/10.1023/A:1004213929699.
  • Hassink, J. et al. (1993) “Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils,” Geoderma, 57(1/2), pp. 105–128. Available at: https://doi.org/10.1016/0016-7061(93)90150-J.
  • Igaz, D. et al. (2020) “Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in Central Europe,” Water, 12(5), 1232. Available at: https://doi.org/10.3390/w12051232.
  • IMGW-PIB (2021) Klimat Polski 2020 [Climate of Poland]. Warszawa: IMGW-PIB. Available at: https://www.imgw.pl/badania-nauka/klimat (Accessed: February 10, 2022).
  • IUNG-PIB (2017) Monitoring chemizmu gleb ornych Polski [Monitoring of the chemistry of Poland’s arable soils]. Puławy: Instytut Uprawy, Nawożenia i Gleboznawstwa. Available at: https://www.gios.gov.pl/chemizm_gleb/index.php?mod=wyniki&cz=C (Accessed: February 21, 2022).
  • Jaja, N. (2016) Understanding the texture of your soil for agricultural productivity. Virginia Cooperative Extension, Virginia Tech, Virginia State University. Available at: https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/CSES/CSES-162/CSES-162-PDF.pdf (Accessed: February 21, 2022).
  • Kun, Á. et al. (2013) „Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples,” Journal of Environmental Geography, 6(3–4), pp. 49–54. Available at: https://doi.org/10.2478/jengeo-2013-0006.
  • Kunlani, B., Khwanchum, L. and Vityakon, P. (2020) “Land use changes affecting soil organic matter accumulation in topsoil and subsoil in Northeast Thailand,” Applied and Environmental Soil Science, 2020, 8241739, pp. 1–15. Available at: https://doi.org/10.1155/2020/8241739.
  • Kuś, J. (2015) „Glebowa materia organiczna – znaczenie, zawartość i bilansowanie [Soil organic matter – importance, content and balancing],” Studia i raporty IUNG-PIB, 45(19) pp. 27–53. Available at: https://doi.org/10.26114/sir.iung.2015.45.02.
  • Lopez, A., Gustavsson, H. and Korkiala-Tanttu, L. (2021) “Comparison between hydrometer and laser diffraction methods in the determination of clay content in fine-grained soils,” IOP Conference Series: Earth and Environmental Science, 710(1), 012012. Available at: https://doi.org/10.1088/1755-1315/710/1/012012.
  • Matus, F.J. (2021) “Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis,” Scientific Reports, 11, 6438. Available at: https://doi.org/10.1038/s41598-021-84821-6.
  • Najmadeen, H.H. (2011) “Effects of soil organic matter, total nitrogen and texture on nitrogen mineralization process,” Al-Nahrain Journal of Science, 14(2), pp. 144–151. Available at: https://doi.org/10.22401/JNUS.14.2.19.
  • Pan, C. et al. (2013) “Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization,” PLoS ONE, 8(1), e54827. Available at: https://doi.org/10.1371/journal.pone.0054827
  • Pietrzak, S. and Hołaj-Krzak, J. (2022) “The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration,” Journal of Water and Land Development, 54, pp. 68–76. Available at: https://doi.org/10.24425/jwld.2022.141556.
  • Płoskonka, D. (2010) “Różnice w wynikach analiz uziarnienia przeprowadzonych różnymi metodami [Differences in results of grain-size analysis made by various methods],” Landform Analysis, 12, pp. 79–85. Available at: http://geoinfo.amu.edu.pl/sgp/LA/LA12/LA12_10.pdf (Accessed February 15, 2022).
  • PN-R-04028:1997 Analiza chemiczno-rolnicza gleby. Metoda pobierania próbek i oznaczanie zawartości jonów azotanowych i amonowych w glebach mineralnych [Agrochemical soil analysis. Method of sampling and determination of nitrate and ammonium ions in mineral soils]. Warszawa: Polski Komitet Normalizacyjny.
  • Podlasek, A., Koda, E. and Vaverková, M.D. (2021) “The variability of nitrogen forms in soils due to traditional and precision agriculture: case studies in Poland,” International Journal of Environmental Research and Public Health, 18(2), 465. Available at: https://doi.org/10.3390/ijerph18020465.
  • Qiu, W.W. et al. (2021) „Soil particle size range correction for improved calibration relationship between the laser-diffraction method and sieve-pipette method,” Pedosphere, 31(1), pp. 134–144. Available at: https://doi.org/10.1016/S1002-0160(20)60055-8.
  • Risch, A.C. et al. (2019) “Soil net nitrogen mineralisation across global grasslands,” Nature Communications, 10, 4981. Available at: https://doi.org/10.1038/s41467-019-12948-2.
  • Ryżak, M. and Bieganowski, A. (2010) „Determination of particle size distrubution of soil using laser diffraction – comparison with areometric method,” International Agrophysics, 24(2), pp. 177–181. Available at: http://www.international-agrophysics.org/Determination-of-particle-size-distrubution-of-soil-using-laser-dif-fraction-comparison,106369,0,2.html (Accessed: February 15, 2022).
  • Sarkar, I., Khan, Md.Z. and Hanif, Md. (2019) “Soil organic fractions in cultivated and uncultivated soils of costal area in Bangladesh,” Journal of Agricultural Chemistry and Environment, 08(03), pp. 129–144. Available at: https://doi.org/10.4236/jacen.2019.83011.
  • Shahandeh, H., Wright, A.L. and Hons, F.M. (2011) “Use of soil nitrogen parameters and texture for spatially-variable nitrogen fertilization,” Precision Agriculture, 12(1), pp. 146–163. Available at: https://doi.org/10.1007/s11119-010-9163-8.
  • Šinkoviová, M. et al. (2017) “Soil particle size analysis by laser diffractometry: result comparison with pipette method,” IOP Conference Series Materials Science and Engineering, 245(7), 072025. Available at: https://doi.org/10.1088/1757-899X/245/7/072025.
  • Skłodowski, P. (2009) “Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008 [Particle size distribution and textural classes of soils and mineral materials – classification of Polish Society of Soil Sciences 2008],” Roczniki Gleboznawcze, 60(2), pp. 5–16.
  • Soinne, H. et al. (2021) “Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils,” European Journal of Soil Science, 72(4), pp. 1497–1512. Available at: https://doi.org/10.1111/ejss.13003.
  • Strączyński, S. and Wróbel, S. (2000) “Zawartość mikroelementów w glebach o zróżnicowanych kategoriach agronomicznych [Micronutrient concentration in soils of diverse agronomic categories]”, Zeszyty Problemowe Postępów Nauk Rolniczych, 471(1), pp. 549–554.
  • Stupnicki, R. (2015) Podstawy biostatystyki [Fundamentals of biostatistics]. Warszawa: Wydawnictwo AWF. Available at: https://www.wskfit.pl/PDF/artykuly/Biostat.pdf (Accessed: February 21, 2022).
  • Taubner, H., Roth, B. and Tippkötter, R. (2009) “Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis,” Journal of Plant Nutrition and Soil Science, 172, pp. 161–171. Available at: https://doi.org/10.1002/JPLN.200800085.
  • Udom, B.E., Benwari, A.O. and Osaro, E.T. (2015) “Organic carbon and nitrogen distribution in particle-size fractions of soils under cassava, plantain and rubber based land use,” International Journal of Soil Science, 10, pp. 166–176. Available at: https://doi.org/10.3923/ijss.2015.166.176.
  • Watros, A. et al. (2019) „Mineral nitrogen content in soils depending on land use and agronomic category”, Applied Ecology and Environmental Research, 17(3) pp. 5663–5675. Available at: https://doi.org/10.15666/aeer/1703_56635675.
  • Wiesmeier, M. et al. (2016) “Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: Effects of climate change and carbon input trends,” Scientific Reports, 6(1), 32525. Available at: https://doi.org/10.1038/srep32525.
  • Yang Y. et al. (2019) “Is the laser diffraction method reliable for soil particle size distribution analysis?,” Soil Science Society of America Journal, 83(2), pp. 276–287. Available at: https://doi.org/10.2136/sssaj2018.07.0252.
  • Zhou W. et al. (2019) “Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand”, PeerJ, 7, e7880. Available at: https://doi.org/10.7717/peerj.7880.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1df8926-47e0-406c-b251-e78cd3137420
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.