Identyfikatory
Warianty tytułu
Konferencja
Symposium “Vibrations In Physical Systems” (26 ; 04-08.05.2014 ; Będlewo koło Poznania ; Polska)
Języki publikacji
Abstrakty
Phenomena occurring in the flows are very complex. Their interpretation, as well as an effective impact on them in the flow control is often only possible with the use of modal analysis and low-dimensional models. In this paper, the selected modal decomposition techniques, namely Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and global stability analysis, are briefly introduced. The design of Reduced Order models basing on Galerkin projection is presented on the example of the flow past a bluff body. Finally, the issues of widening of the application of the models are addressed.
Czasopismo
Rocznik
Tom
Strony
223--228
Opis fizyczny
Bibliogr. 12 poz., il. kolor., wykr.
Twórcy
autor
- Poznan University of Technology, Division of Virtual Engineering, ul. Piotrowo 3, Poznan, Poland
autor
- Poznan University of Technology, Division of Virtual Engineering, ul. Piotrowo 3, Poznan, Poland
autor
- Poznan University of Technology, Division of Virtual Engineering, ul. Piotrowo 3, Poznan, Poland
Bibliografia
- 1. P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 1998.
- 2. L. Sirovich, Turbulence and the dynamics of coherent structures. Quart. Appl. Math., 45 (1987), 561–590.
- 3. M. Morzyński, K. Afanasiev, F. Thiele, Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis, Comput. Meth. Appl. Mech, Engrng., 169 (1999), 161-176.
- 4. W. Stankiewicz, M. Morzyński, B.R. Noack, F. Thiele, Stability Properties Of 2D Flow Around Ahmed Body, Math. Model. Analysis (2005), 129-134.
- 5. P.J. Schmid, J. Sesterhenn, Dynamic Mode Decomposition of Numerical and Experimental Data, J. Fluid Mech., 656 (1) (2010), 5-28.
- 6. O. Frederich, D.M. Luchtenburg, Modal analysis of complex turbulent flow, 7th International Symposium on Turbulence and Shear Flow Phenomena (2011).
- 7. B.R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497 (2003), 335-363.
- 8. W. Stankiewicz, R. Roszak, M. Morzyński, Genetic Algorithm-based Calibration of Reduced Order Galerkin Models, Math. Model. Anal., 16 (2) (2011), 233 – 247.
- 9. O. Lehmann, M. Luchtenburg, B. Noack, R. King, M. Morzyński, G. Tadmor, Wake stabilization using POD Galerkin models with interpolated modes, 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, Seville, Spain, 12.-15.12.2005, 500–505.
- 10. S. Siegel, J. Seidel, C. Fagley, D.M. Luchtenburg, K. Cohen, T. Mclaughlin, Lowdimensional modelling of a transient cylinder wake using double proper orthogonal decomposition, J. Fluid Mech., 610 (1) (2008), 1-42.
- 11. M. Morzyński, W. Stankiewicz, B. Noack, F. Thiele, G. Tadmor, Generalized mean-field model with continuous mode interpolation for flow control, 3rd AIAA Flow Control Conference, San Francisco, 5-8.06.2006, AIAA-Paper 2006-3488.
- 12. W. Stankiewicz, M. Morzyński, B.R. Noack, G. Tadmor, Reduced Order Galerkin Models of Flow around NACA-0012 Airfoil, Math. Model. Analysis, 13 (1) (2008), 113-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1ceb650-e87c-42f9-86ce-c7a358c8495c