PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel method to extract vanadium from vanadium-bearing steel slag using sodium carbonate solution

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method using sodium carbonate solution to treat a vanadium-bearing steel slag is proposed. The effects of the particle size, solid-to-liquid ratio, initial concentration of sodium carbonate solution, leaching temperature and stirring speed on the leaching rate of vanadium were investigated. The leaching kinetics of vanadium from the vanadium-bearing steel slag was studied, which indicated that the leaching rate was controlled by the step of diffusion through the solid layer around the unreacted core. The apparent activation energy for the process was 13.75 kJ/mol. By using this process, vanadium could be extracted effectively with the leaching rate of more than 80%.
Słowa kluczowe
Rocznik
Strony
911--921
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • School of Metallurgy, Northeastern University
  • Institute of Vanadium Titanium Technology, HBIS Group ChengSteel
autor
  • School of Metallurgy, Northeastern University, No.11 heping Region wenhua street, Shenyang, Liaoning , 110004, China
autor
  • Institute of Vanadium Titanium Technology, HBIS Group ChengSteel
autor
  • School of Metallurgy, Northeastern University
autor
  • Institute of Vanadium Titanium Technology, HBIS Group ChengSteel
autor
  • Institute of Vanadium Titanium Technology, HBIS Group ChengSteel
Bibliografia
  • 1. GAO M. L., CHEN D. H., LI L. J., DU H., ZHENG S. L., 2011. Dissolution behavior of vanadium from vanadium-bearing steel slag in KOH sub-molten salt. The Chinese Journal of Process Engineering 11(5), 761-766.
  • 2. GAO M. L., CHEN D. H., LI L. J., SHI L. X., ZHENG S. L., 2013. Process and mechanism of leaching vanadium from vanadium-bearing steel slag with sub-molten salt. The Chinese Journal of Process Engineering 6(13), 964-968.
  • 3. HAYES E., 1961. Chromium and vanadium. Journal of Industrial and Engineering Chemistry 53(2), 105–107.
  • 4. HORLIN T., NIKLEWSKI T., NYGREN M., 1973. Magnetic, elctrical and thermal studies of the V(1-x)MOxO2. Materials Research Bulletin 8(2): 179-189.
  • 5. HUANG D., 2000. Re-vanadium and steel-making. Beijing, China: Metallurgy Industry Press, 34-35.
  • 6. LIANG B., JIANG W., HU J., 2006. A new structured vanadium catalyst: design manufacture and measurement. Journal of Chemical Industry and Engineering (China) 57(8), 19111916.
  • 7. LIAO, S., BO, T., 1985. Vanadium metallurgy in foreign countries. Beijing, China: Metallurgy Industry Press 17-21.
  • 8. LI L. J., ZHANG L., ZHENG S. L., LOU T. P., ZHANG Y., CHEN D. H., ZHANG Y., 2011. Acid leaching of calcined vanadium titanomagnetite with calcium compounds for extraction of vanadium. Chinese Journal of Process Engineering 11(4), 573–578.
  • 9. LIU B., DU H., WANG S. N., ZHANG Y., ZHENG S. L., LI L. J., CHEN D. H., 2012. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO3 binary system. AIChE Journal 2(59):541-545.
  • 10. LU S., HOU L., GAN F., 1993. Preparation and optical properties of phase-change VO2 Thin Films. Journal of Materials Science 28(8): 2169-2177.
  • 11. MOSKALYK, R. R., ALFANTAZI, A. M., 2003. Processing of vanadium: a review. Minerals Engineering 16(9), 793–805.
  • 12. PREBLINGER H., 2002. Vanadium in converter slags. Steel Research. 73(12), 522525.
  • 13. SHI D. J., 1989. Practice of vanadium concentration in blast furnace. Iron and Steel 10(24), 6-10.
  • 14. SMITH A., 1973. Optical storage in VO films. Applied Physics Letters 23: 436-437.
  • 15. SUN Z., ZHANG Y., ZHENG S. L., 2009. A new method of potassium chromate production from chromite and KOH-KNO3-H2O binary submolten salt system. AIChE Journal 55(11), 2646–2656.
  • 16. QIU, S., WEI, C., LI, M., ZHOU, X., LI, C., DENG, Z., 2011. Dissolution kinetics of vanadium trioxide at high pressure in sodium hydroxide-oxygen systems. Hydrometallurgy 105(3), 350–354.
  • 17. WANG S. N., DU H., ZHENG S. L., LIU B., YAN H., ZHANG Y., 2017. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process. Chinese Journal of Chemical engineering, 68(7): 2781-2789.
  • 18. XIAO Q., G., CHEN Y., GAO Y. Y., XU H. B., ZHANG Y., 2010. Leaching of silica from vanadium-bearing steel slag in sodium hydroxide solution. Hydrometallurgy, 104(2), 216-221.
  • 19. YANG S. B., LUO Z. Z., WEN Y. C., 2002. Vanadium recovery from BOF slag containing vanadium oxide. Iron and Steel 37(9), 1720.
  • 20. ZHANG Y., ZHENG S. L., XU H. B., DU H, ZHANG Y., 2010. Decomposition of chromite ore by oxygen in molten NaOH-NaNO3. International Journal of Mineral Processing 95(1):10–17.
  • 21. ZHAO Y., LI H. Y., YIN X. C., 2014. Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid. International Journal of Mineral Processing 133, 105-111.
  • 22. ZHAO, T. C., 2002. Non-ferrous extractive metallurgy handbook. Beijing, China: Metallurgy Industry Press 25-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1ccd77f-c04a-4fe7-bdd0-bd5688b3a3df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.