PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Subacute Poisoning with Deltamethrin on the Levels of Interleukin 1ß and Tumour Necrosis Factor Α in the Livers and Kidneys of Mice

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ podostrego zatrucia deltametryną na poziom interleukiny 1ß i czynnika α martwicy nowotworu w wątrobie i nerkach myszy
Języki publikacji
EN PL
Abstrakty
EN
Deltamethrin is a type II pyrethroid. Deltamethrin’s action is characterised by nephrotoxicity, hepatotoxicity and immunotoxicity. The aim of the study was to evaluate the effect of poisoning with deltamethrin on the levels of interleukin1ß and TNFα in the livers and kidneys of mice. A total of 24 female mice were divided into 3 groups of 8: - controls, - receiving deltamethrin i.p. at the dose of 41.5 mg/kg for 28 days - receiving deltamethrin i.p. at the dose of 8.3 mg/kg for 28 days. On day 29 the animals were euthanised, livers and kidneys were obtained, homogenised and centrifuged. The supernatant was used for measuring IL-1ß and TNFα concentration with ELISA tests. The results were analysed with Statsoft Statistica. The interleukin 1ß concentrations were significantly higher in the kidneys (18.30±16.85) of mice exposed to the higher dose of deltamethrin than in the controls (8.15±4.66) (p<0.05). In the livers of mice receiving 41.5mg/kg deltamethrin it was 203±71.63 vs 46.77±34.79 (p<0.05). In the livers of animals receiving the lower dose it was higher than in the control group (96.51±24.73) (p<0.05). The TNF α was elevated in the kidneys of mice exposed to the higher dose of deltamethrin (6.56±3.26 vs 2.89±1.57)(p<0.05). Conclusion: Deltamethrin produces a significant increase of interleukin 1ß in the livers and kidneys of mice and so the cytokine seems to be a good marker of hepatotoxicity and nephrotoxicity in the course of subacute poisoning.
PL
Deltametryna jest pyretroidem typu II. Działanie deltametryny charakteryzuje się nefrotoksycznością, hepatotoksycznością i immunotoksycznością. Celem pracy była ocena wpływu zatrucia deltametryną na poziom interleukiny1ß i TNFα w wątrobie i nerkach myszy. W badaniach 24 samice myszy podzielono na 3 grupy po 8: - kontrole, - otrzymywanie deltametryny i.p. w dawce 41,5 mg/kg przez 28 dni - deltametryna i.p. w dawce 8,3 mg/kg przez 28 dni. W 29 dniu zwierzęta zostały uśmiercone, pobrano wątroby i nerki, które następnie homogenizowano i odwirowano. Supernatant wykorzystano do pomiaru stężenia IL-1ß i TNFα za pomocą testów ELISA. Wyniki analizowano za pomocą Statsoft Statistica. Stężenia interleukiny 1ß były znacząco wyższe w nerkach (18,30±16,85) myszy narażonych na wyższą dawkę deltametryny niż u kontroli (8,15±4,66) (p<0,05). W wątrobach myszy otrzymujących 41,5 mg/kg deltamtehryny było to 203±71,63 vs 46,77±34,79 (p<0,05). W wątrobach zwierząt otrzymujących niższą dawkę była ona wyższa niż w grupie kontrolnej (96,51±24,73) (p<0,05). TNFα był podwyższony w nerkach myszy eksponowanych na wyższą dawkę deltametryny (6,56±3,26 vs 2,89±1,57) (p<0,05). Wniosek: Deltametryna powoduje znaczny wzrost interleukiny 1ß w wątrobie i nerkach myszy, dlatego cytokina wydaje się być dobrym markerem hepatotoksyczności i nefrotoksyczności w przebiegu zatrucia podostrego.
Rocznik
Tom
Strony
61--66
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Chair and Department of Hygiene and Epidemiology, Medical University of Lublin, Poland
  • Chair and Department of Hygiene and Epidemiology, Medical University of Lublin, Poland
  • Medical clinic New Chelm Sp. z o.o, Diagnostic and Therapy Center for Gastrointestinal Diseases, Gdańsk, Poland
Bibliografia
  • 1. Saillenfait AM, Ndiaye D, Sabaté JP. Pyrethroids: exposure and health effects--an update. Int J Hyg Environ Health. 2015;218(3):281-92;
  • 2. Hill N, Zhou HN, Wang P, Guo X, Carneiro I, Moore SJ. A household randomized, controlled trial of the efficacy of 0.03% transfluthrin coils alone and in combination with long-lasting insecticidal nets on the incidence of Plasmodium falciparum and Plasmodium vivax malaria in Western Yunnan Province, China. Malar J. 2014 ;13:208;
  • 3. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere. 2018 Jan;191:990-1007. doi: 10.1016/j.chemosphere.2017.10.115. Epub 2017 Oct 23. PMID: 29145144;
  • 4. Morgan MK. Children's exposures to pyrethroid insecticides at home: a review of data collected in published exposure measurement studies conducted in the United States. Int J Environ Res Public Health. 2012;9(8):2964-85;
  • 5. Al.-Omar MS, Naz M, Mohammed SAA, Mansha M, Ansari MN, Rehman NU, Kamal M, Mohammed HA, Yusuf M, Hamad AM, Akhtar N, Khan RA. Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol. Int J Environ Res Public Health. 2020 25;17(17):6177;
  • 6. Nieradko-Iwanicka B, Borzęcki A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol Rep. 2015;67(3):535-41;
  • 7. Skolarczyk J, Pekar J, Nieradko-Iwanicka B. Immune disorders induced by exposure to pyrethroid insecticides. Postepy Hig Med Dosw (Online). 2017;71(0):446-453;
  • 8. Amin KA, Hashem KS. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res. 2012 ;8:45;
  • 9. Jaremek M, Nieradko-Iwanicka B. The effect of subacute poisoning with fenpropathrin on mice kidney function and the level of interleukin 1β and tumor necrosis factor α. Mol Biol Rep. 2020;47(6):4861-4865;
  • 10. Burns CJ, Pastoor TP. Pyrethroid epidemiology: a quality-based review. Crit Rev Toxicol. 2018 ;48(4):297-311;
  • 11. Glorennec P, Serrano T, Fravallo M, Warembourg C, Monfort C, Cordier S, Viel JF, Le Gléau F, Le Bot B, Chevrier C. Determinants of children's exposure to pyrethroid insecticides in western France. Environ Int. 2017 ;104:76-82;
  • 12. Abdel-Daim MM, Abdelkhalek NK, Hassan AM. Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia; Oreochromis niloticus. Ecotoxicol Environ Saf. 2015 ;111:146-52;
  • 13. Dubey N, Khan AM, Raina R. Sub-acute deltamethrin and fluoride toxicity induced hepatic oxidative stress and biochemical alterations in rats. Bull Environ Contam Toxicol. 2013 ;91(3):334-8;
  • 14. Abdou RH, Abdel-Daim MM. Alpha-lipoic acid improves acute deltamethrin-induced toxicity in rats. Can J Physiol Pharmacol. 2014;92(9):773-9;
  • 15. Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan Z, Wang X, Martínez MA. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ Res. 2019 ;170:260-281
  • 16. Zhong YF, Huang XW, Shi N. [Role of interleukin-1 beta in deltamethrin neurotoxicity]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2009 ;27(4):244-6;
  • 17. Han B, Lv Z, Zhang X, Lv Y, Li S, Wu P, Yang Q, Li J, Qu B, Zhang Z. Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut. 2020 ;259:113870;
  • 18. Feriani A, Hachani R, Tir M, Ghazouani L, Mufti A, Borgi MA, Allagui MS. Bifenthrin exerts proatherogenic effects via arterial accumulation of native and oxidized LDL in rats: the beneficial role of vitamin E and selenium. Environ Sci Pollut Res Int. 2020 ;27(6):5651-5660;
  • 19. Aouey B, Derbali M, Chtourou Y, Bouchard M, Khabir A, Fetoui H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ Sci Pollut Res Int. 2017;24(6):5841-5856;
  • 20. Gargouri B, Bhatia HS, Bouchard M, Fiebich BL, Fetoui H. Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicol Lett. 2018 ;294:73-86;
  • 21. Piłat D, Mika J. The role of interleukin-1 family of cytokines in nociceptive transmission. Ból 2014;15(4): 39-47;
  • 22. Nieradko-Iwanicka B, Konopelko M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. Int J Environ Res Public Health. 2020 ;17(24):9240;
  • 23. Abdel-Daim MM, El-Ghoneimy A. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats. Ren Fail. 2015 ;37(2):297-304;
  • 24. Klimowska A, Amenda K, Rodzaj W, Wileńska M, Jurewicz J, Wielgomas B. Evaluation of 1-year urinary excretion of eight metabolites of synthetic pyrethroids, chlorpyrifos, and neonicotinoids. Environ Int. 2020 ;145:106119;
  • 25. Radwan M, Jurewicz J, Wielgomas B, Piskunowicz M, Sobala W, Radwan P, Jakubowski L, Hawuła W, Hanke W. The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere. 2015;128:42-8;
  • 26. Dziewirska E, Radwan M, Wielgomas B, Klimowska A, Radwan P, Kałużny P, Hanke W, Słodki M, Jurewicz J. Human Semen Quality, Sperm DNA Damage, and the Level of Urinary Concentrations of 1N and TCPY, the Biomarkers of Nonpersistent Insecticides. Am J Mens Health. 2019 ;13(1):1557988318816598;
  • 27. Radwan M, Jurewicz J, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Hanke W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J Occup Environ Med. 2014 ;56(11):1113-9;
  • 28. Wielgomas B, Nahorski W, Czarnowski W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int J Hyg Environ Health. 2013 ;216(3):295-300;
  • 29. Klimowska A, Wielgomas B. Off-line microextraction by packed sorbent combined with on solid support derivatization and GC-MS: Application for the analysis of five pyrethroid metabolites in urine samples. Talanta. 2018;176:165-171;
  • 30. Wielgomas B, Piskunowicz M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere. 2013 ;93(10):2547-53;
  • 31. Rodzaj W, Wileńska M, Klimowska A, Dziewirska E, Jurewicz J, Walczak-Jędrzejowska R, Słowikowska-Hilczer J, Hanke W, Wielgomas B. Concentrations of urinary biomarkers and predictors of exposure to pyrethroid insecticides in young, Polish, urban-dwelling men. Sci Total Environ. 2021 ;773:145666;
  • 32. Jurewicz J, Radwan M, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Bochenek M, Hanke W. The effect of environmental exposure to pyrethroids and DNA damage in human sperm. Syst Biol Reprod Med. 2015 ;61(1):37-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1c54e2b-689f-4212-8228-f7abf387394c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.