Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The subject of this study and analysis was titanium alloy, applied among others to the friction components of orthopaedic (artificial hip joint) implants. This material was subjected to abrasive finishing using a synthetic diamond as a tool. The properties of the studied titanium alloy were characterised. The processing technology and the research methods are discussed. The surfaces, after being subjected to abrasive machining, were studied using three research instruments – an interference microscope, a scanning electron microscope, and an atomic force microscope. Advanced metrology software was used to analyse the measurement data. The aim of the research was to present the changes taking place in the forming of the surface of the studied titanium alloy, in particular those occurring in the final sequential processing. A characterisation of the machined surfaces was prepared based on parametric (surface topography – parameters and functions) and non-parametric (surface morphology – images) analysis. The significant influence of the sequence and the tool (diamond grain and micro-grain) on the surface topography shaped during the technological process is presented. Improvement in the surface quality and features was observed. Parametric analysis showed no significant differences between TA-III and TA-IV surfaces, while these differences were visualised by non-parametric analysis. Moreover, the hereditary features of the surface topography (isotropy and pits/valleys) and their influence on the potential functional properties (place/area for accumulation/retaining of the lubricant in the friction zone) of the titanium alloy were analysed.
Wydawca
Rocznik
Tom
Strony
150--158
Opis fizyczny
Bibliogr. 28 poz., fig.
Twórcy
autor
- Faculty of Mechanical Engineering, Cracow University of Technology
- Faculty of Mechanical Engineering, Cracow University of Technology
Bibliografia
- 1. Bazaka O., Bazaka K., Kingshott P., Crawford R.J., Ivanova E.P. Metallic Implants for Biomedical Applications. The Chemistry of Inorganic Biomaterials (ed. Spicer Ch.). Royal Society of Chemistry; 2021.
- 2. Nicholson J.W. Titanium Alloys for Dental Implants: a Review. Prosthesis. 2020; 2(2): 100–116.
- 3. Gierzyńska-Dolna M., Lijewski M. Application of Titanium and Its Alloys in Biomedical Engineering. Materials Engineering. 2012; 33(4): 315–318.
- 4. Fraczek T., Olejnik M., Tokarz A. Evaluations of Plasma Nitriding Efficiency of Titanium Alloys for Medical Applications. Metalurgija. 2009; 48(2): 83–86.
- 5. Kustas F.M., Misra M.S. Friction and Wear of Titanium Alloys. Friction, Lubrication and Wear (ed. Totten G.E.). ASM International; 2018.
- 6. Schmeidl K., Wieczorowski M., Grocholewicz K., Mendak M., Janiszewska-Olszowska J. Frictional Properties of the TiNbTaZrO Orthodontic Wire - a Laboratory Comparison to Popular Archwires. Materials. 2021; 14(21); 6233.
- 7. Czerniec M., Zubrzycki J. Study of Contact Pressures in Total Hip Replacement. Advances in Science and Technology Research Journal. 2021; 15(2): 176–183.
- 8. Dziedzic K., Zubrzycka-Wróbel J., Józwik J., Barszcz M., Siwak P., Chałas R. Research on Tribological Properties of Dental Composite Materials. Advances in Science and Technology Research Journal. 2016; 10(32): 144–149.
- 9. Kumaran T.S., Ko T.J., Uthayakumar, M., Khan A.M., Niemczewska-Wójcik, M. Surface Texturing by Dimple Formation in TiAlSiZr Alloy Using μ-EDM. Journal of the Australian Ceramic Society. 2017; 53(2): 821–828.
- 10. Lauro C.H., Ribeiro Filho S.L.M.,Cardoso Brandão L.,Davim J.P. Analysis of Behaviour Biocompatible Titanium Alloy (Ti-6Al-7Nb) in the Micro-cutting. Measurement. 2016; 93: 529–540.
- 11. Affatato S., Ruggiero A., Logozzo S. Metal Transfer Evaluation on Ceramic Biocomponents: a Protocol Based on 3D Scanners. Measurement. 2021; 173: 108574.
- 12. Zabala A., Blunt L., Tejero R., Llavori I., Aginagalde A., Tato W. Quantification of Dental Implant Surface Wear and Topographical Modification Generated During Insertion. Surface Topography: Metrology and Properties. 2020; 8(1): 015002.
- 13. Lipiński D., Banaszek K., Mathia T.G. New Methodology for Discrimination of Topography Diversity of Engineering Surfaces – Case of Grinding. Measurement. 2022; 190: 110659.
- 14. Krolczyk G.M., Legutko S. Experimental Analysis by Measurement of Surface Roughness Variations in Turning Process of Duplex Stainless Steel, Metrology and Measurement Systems. 2014; 21(4): 759–770.
- 15. Niemczewska-Wójcik M., Wójcik A. The Multi Scale Analysis of Ceramic Surface Topography Created in Abrasive Machining Process. Measurement. 2020; 166: 108217
- 16. Szala M., Kot E.A. Influence of Repainting on the Mechanical Properties, Surface Topography and Microstructure of Polyester Powder Coatings. Advances in Science and Technology Research Journal. 2017; 11(2): 159–165.
- 17. Macek W., Rozumek D., Królczyk G.M. Surface Topography Analysis Based on Fatigue Fractures Obtained with Bending of the 2017A-T4 Alloy. Measurement. 2020; 152: 107347.
- 18. Macek W., Branco R., Costa J.D., Pereira C. Strain Sequence Effect on Fatigue Life and Fracture Surface Topography of 7075-T651 Aluminium Alloy. Mechanics of Materials. 2021; 160: 103972.
- 19. Kowalski S., Cygnar M. The Application of TiSiN/TiAlN Coatings in the Mitigation of Fretting Wear in Push Fit Joints. Wear. 2019; 426–427: 725–734.
- 20. Szala, M., Walczak, M., Pasierbiewicz, K., Kamiński M. Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate. Coatings. 2019; 9(5): 340.
- 21. ISO 25178-2:2012, Geometric Product Specifications (GPS)–Surface Texture: Areal-Part 2: Terms, Definitions and Surface Texture Parameters; International Organization for Standardization: Geneva, Switzerland. 2012.
- 22. Grechishnikov V.A., Pautov G.A., Yurasov S.Y., Yurasova O.I. Technological Inheritance in the Machining of Titanium Alloys. Russian Engineering Research. 2017; 37(3): 270–272.
- 23. Li J., Wang B., Fang S., Chen P. Investigation of the Microstructure Evolution and Mechanical Properties of a TC6 Alloy Blade Preform Produced by Cross Wedge Rolling. Archives of Civil and Mechanical Engineering. 2020; 20(70).
- 24. Bartkowiak T., Grochalski K., Gapiński B., Wieczorowski M. Discrimination of Surface Topographies Created by Two-Stage Process by Means of Multiscale Analysis. Materials. 2021; 14(22): 7044.
- 25. Fangaia S.I.G., Nicolau P.M.G., Guerra F.A.D.R.A., Melia Rodrigo M., Ribeiro A.C.F., Valente A.J.M., Santos J.R.C., Marques J.M.C., Esteso M.A. The Behaviour of Aluminium Ions in Artificial Saliva and the Impact of the Chlorhexidine Digluconate on Its Removal – a Diffusion Model. Journal of Molecular Liquids. 2022; 353: 118749.
- 26. Niemczewska-Wójcik M. The Dual System for Characterizing the Technological and Operational Surface Layer of Friction Elements. Publishing House of the Institute for Sustainable Technologies; 2018.
- 27. Niemczewska-Wójcik M., Pethuraj M., Uthayakumar M., Abdul Majid M.S. Characteristics of the Surface Topography and Tribological Properties of Reinforced Aluminum Matrix Composite. Materials. 2022; 15(1): 358.
- 28. Krolczyk G.M., Maruda R.W., Krolczyk J.B., Nieslony P., Wojciechowski S., Legutko S. Parametric and Nonparametric Description of the Surface Topography in the Dry and MQCL Cutting Conditions. Measurement. 2018; 121: 225–239.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1c53d65-bb43-492a-95c1-2311c8782ec7