Prosimy cytować jako: Inż. Ap. Chem. 2013, 52, 5, 412-414

str. 412

Michał DYLĄG¹, Jerzy ROSIŃSKI²

e-mail: mdylag@pk.edu.pl

¹ Instytut Zaawansowanych Technologii Wytwarzania, Kraków

² Katedra Aparatury Przemysłowej, Wydział Mechaniczny, Politechnika Krakowska, Kraków

Metoda szybkiego szacowania rozkładów wielkości flokuł

Wstęp

Brak możliwości sterowania przebiegiem procesu flokulacji, zatem zmianami rozkładu wielkości powstających flokuł – na przykład poprzez zmiany wartości sterowalnych zmiennych procesowych, stanowi podstawowe ograniczenie w szerszym wykorzystaniu tej operacji w zastosowaniach przemysłowych. Szczególnie istotne jest zatem stworzenie możliwości procesowego reagowania na dynamiczne zmiany rozkładów wielkości flokuł, wynikające z mechanizmów ich powstawania i rozpadu. Wydaje się, że dysponowanie możliwością szybkiej oceny i opisem aktualnego składu ziarnowego fazy stałej zawieszonej w cieczy – stwarza możliwość podjęcia prac nad układami regulacji i automatyzacji procesu.

Sformułowanie problemu

Efektywne rozwiązanie cząstkowych równań różniczkowo-całkowych bilansu populacji – zapisanych osobno dla cząstek pierwotnych oraz flokuł uzyskano metodą objętości skończonych. Zastosowanie metody wymagało długiego czasu prowadzenia obliczeń numerycznych, co przyjęto za uzasadnienie poszukiwania innych poza grupą metod klasycznych i zaawansowanych [*Ramkrishna, 2000; Marchisio i in.,* 2003] oraz kwadraturowych QMOM [*Bałdyga; Orciuch, 2001*], postaci zredukowanego modelu gwarantującego zadowalającą dokładność.

Możliwość taką daje zastosowanie metody momentów, gdzie równania modelu przez dokonanie transformacji całkowej, zostają przekształcone w równania momentów rozkładów wielkości cząstek [*Szatko i in.,* 2010]. W oparciu o wyznaczone ich wartości, należy dokonać rekonstrukcji odpowiednich rozkładów wielkości. Oznacza to, że kosztem świadomej utraty części informacji z pełnego rozwiązania numerycznego – uzyskuje się szybkie rozwiązanie problemu.

Celem dokonania transformacji odwrotnej na podstawie wartości momentów można wykorzystać jedną z metod: odwrócenia macierzy lub transformacji odwrotnej; przy zadeklarowaniu arbitralnie dobranej postaci funkcji rozkładu wielkości flokuł. Przyjęcie drugiej z przedstawionych metod skutkuje koniecznością obliczenia wartości momentów, a następnie w oparciu o przyjętą postać funkcji – konieczność zrekonstruowania postaci jej operatora funkcyjnego.

Po analizie możliwości doboru typu rozkładu – uwzględniając dane literaturowe z zakresu możliwych i stosowanych funkcji rozkładu wielkości cząstek zawieszonych w cieczy – przyjęto do analizy porównawczej rozkład normalny oraz rozkład *Gaudina-Melloya*.

Reasumując, rozważany problem dotyczy oceny zmodyfikowanej metodyki badań, opartej o hybrydową procedurę zapisu bilansów populacji – znamienną ich redukcją, transformacją oraz implementacją – łącznie z procedurami symulacyjnymi opartymi o metody CFD oraz zdefiniowane pole przestrzeni fizycznej.

Można zatem uznać, że prezentowana metodyka badań jest jednoznacznie zdefiniowana i przetestowana w zakresie efektywnych procedur symulacyjnych oraz eksperymentalnych [*Dyląg i in., 2008a,b*].

Badania wstępne

Transformacja całkowa równań bilansu populacji do postaci momentów nie jest matematycznie w pełni możliwa – zaproponowano tzw. metodę hybrydową, gdzie wyłącznie momenty rozkładów wielkości flokuł i cząstek pierwotnych, zostaną wyznaczone jako niewiadome; podczas gdy równania kinetyki wzajemnego oddziaływania będą wprowadzone bez poddawania ich transformacji całkowej. Efektem powyższych operacji jest zmniejszenie liczby niewiadomych. Jednakże zastosowana procedura wymaga w czasie prowadzenia obliczeń symulacyjnych – dokonywania stałej rekonstrukcji rozkładów z wykorzystaniem momentów. Po licznych testach zdecydowano zastosować metodę transformacji odwrotnej z wykorzystaniem dwóch rozkładów: normalnego oraz *Gaudina-Melloya*. Oznacza to, że w ogólności wykorzystując rozkład istotnych parametrów rozkładu (np. wartość średnia, odchylenie standardowe) – wyznacza się ich wartości z wartości momentów; co można uznać za jednoznaczne zdefiniowanie funkcji rozkładu.

Powyższa propozycja pozwala na rezygnację z wprowadzania dodatkowych równań zamykających – związaną z zależnością członów źródłowych od rozkładu gęstości liczbowej oraz ostateczne odstąpienie od stosowania metod QMOM [*McGraw*, 1997; Jaworski, 2005]; istotny element stanowi także łatwiejsza adaptacja istniejących układów regulacji i automatyzacji procesu.

Zakładając, że rekonstrukcja rozkładów nastąpi przy wykorzystaniu rozkładu normalnego, można zapisać jego postać w formie równania:

$$q_{o}(m) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{(m - m_{50})^{2}}{2\sigma^{2}}\right]$$
(1)

gdzie parametrami są: wartość średnia m_{50} oraz odchylenie standardowe σ . Drugą analizowaną funkcją jest rozkład *Gaudina-Melloya*, opisany równaniem w postaci:

$$q_o(m) = \frac{m^*}{L_m} \left(1 - \frac{m}{L_m}\right)^{m^* - 1}$$
(2)

gdzie parametry funkcji rozkładu stanowią:

$$m^* = \frac{2\sigma^2}{m_{50}^2 - \sigma^2}$$
(3)

$$L_m = m_{50} \frac{m_{50}^2 + \sigma^2}{m_{50}^2 - \sigma^2}$$
(4)

Ponieważ wartość średnia m_{50} oraz odchylenie standardowe σ decydujące o funkcji rozkładu zależą wprost od momentów [*Marchisio i in.*, 2003]

$$m_{50} = \frac{\mu_1}{\mu_0} \tag{5}$$

$$\sigma = \left[\frac{\mu_2}{\mu_o} - \left(\frac{\mu_1}{\mu_o}\right)^2\right]^{0.5} \tag{6}$$

można zatem stwierdzić, że dla dokonania rekonstrukcji funkcji rozkładu wielkości cząstek – konieczna jest znajomość wartości momentów μ_0, μ_1, μ_2 .

Należy jednakże zauważyć, że przedział wartości definiujących funkcję rozkładu normalnego <- ∞ , + ∞ > – dopuszcza możliwość występowania przy rekonstrukcji ujemnych wartości (np. ujemnej masy!). Oznacza to, że dla tego rozkładu należy każdorazowo posłużyć się funkcją kontrolną – będącą warunkiem normującym:

$$\int_{m_{\min}}^{m_{\max}} q_o(m) dm = 1$$
⁽⁷⁾

zarówno w odniesieniu do cząstek pierwotnych, jak też flokuł. Spełnienie warunku oznacza pozostawanie funkcji rozkładu całkowicie w zakresie wartości oczekiwanych, natomiast dla rozkładu *Gaudina-Melloya*, ze względu na przedział definicyjny <0, + ∞ >, problem nie występuje.

INŻYNIERIA I APARATURA CHEMICZNA

Cel pracy

Uwzględniając fakt dowolnego doboru postaci funkcji rozkładu – wynikający z zastosowanych procedur odwrotnej transformacji, postanowiono zbadać wpływ podjętej decyzji na końcowe efekty.

Bazę odniesienia stanowią wyniki symulacyjnych badań numerycznych, ustalone objętości kontrolne (elementy bilansowe) siatki dyskretyzacyjnej oraz założenie idealnego przemieszania w objętości reaktora lub wykorzystania lokalnych wartości szybkości dyssypacji energii kinetycznej dla elementu bilansowego.

Numeryczne sformułowanie problemu

Numeryczne rozwiązanie bilansów populacji oraz równań momentów przeprowadzono metodą objętości skończonych, dokonując wcześniej dyskretyzacji położenia elementów bilansowych zgodnie z rys. 1 oraz dyskretyzacji współrzędnych własności opisujących analizowany układ dwufazowy. Jako charakterystyczną ich własność uznano masę flokuł – opisując ją jako jednowymiarowy element bilansowy, podzielony na przedziały (klasy). Przyporządkowane im położenia punktów siatki dyskretyzacyjnej – odpowiadają każdorazowo średniej masie reprezentującej rozpatrywany przedział frakcyjny [*Patankar, 1980; Dyląg i in., 2011*].

					Z
1	8	15	22	29	
2	9	16	23	30	
3	10	17	24	31	
45	11 12	18 19	25 26	32 33	
6	13	20	27	34	
7	14	21	28	35	

Rys. 1. Zbiornik reaktora z zaznaczeniem elementów bilansowych

Stanowisko badawcze – warunki i metodyka pomiarów

Celem dokonania weryfikacji wyników badań symulacyjnych, zostało zbudowane uniwersalne stanowisko wyposażone w niezbędne układy pomiarowe, regulacyjne; dodatkowo zabudowano układ pomiaru pulsacyjnych składowych prędkości oraz poboru i analizy rozkładów frakcyjnych – wyposażone w przetworniki analogowo-cyfrowe i specjalistyczne oprogramowanie.

Badania prowadzono w zbiorniku o średnicy D = 288 mm, wyposażonym w cztery przegrody, przy zastosowaniu mieszadła turbinowego pracującego przy obrotach odpowiadających liczbie $Re = 10^4 \div 2,2 \cdot 10^4$. Schemat stanowiska, łącznie z podstawowymi układami pomiarowymi i regulacji przedstawiono na rys. 2.

Celem uzyskania gwarancji braku aglomeratów i wytworzenia zawiesiny zupełnej cząstek pierwotnych zawieszonych w wodzie układ był poddawany mieszaniu przez około 5 minut. Następnie dodawano w równej ilości wodne roztwory CaCl₂ i NaOH. Czas pełnej homogenizacji wprowadzonych roztworów soli obliczano z odpowiednich zależności literaturowych. Wprowadzany wielopunktowo na powierzchnię mieszanej cieczy flokulant nie powodował wytrącania z roztworu trudno rozpuszczalnego Ca(OH)₂. Dodatki wymienionych związków skutkowały ustaleniem wartości *pH* 12,3; co przy znacznej ilości dodanego flokulanta (odpowiadającej ca. 1 g/dm³) – uzasadnia przyjęcie wartości efektywności koagulacji $\alpha' = 1,0$ [*Dyląg i in., 2011*].

Pobrane w warunkach mieszania próbki o objętości ca. 5÷8 ml – były następnie analizowane pod mikroskopem i fotografowane kamerą CCD. Analogowe sygnały – przetworzone następnie w układ cyfrowy – poddawano analizie z wykorzystaniem sprzętu komputerowego i komercyjnych programów statystycznych.

Rys. 2. Schemat stanowiska badawczego

Wyniki badań oraz ich dyskusja

Badania dotyczyły porównania wyników obliczeń symulacyjnych uzyskanych z wykorzystaniem metody objętości skończonych – dla pełnego układu równań bilansów populacji oraz postaci uproszczonej metodą momentów; dla $Re = 10^4$ oraz $Re = 2,2\cdot10^4$. Dodatkowo uwzględniono zmiany w opisie szybkości dyssypacji energii kinetycznej rozróżniając: założenie idealnego przemieszania oraz uwzględnianie wartości lokalnych powiązanych z wybranymi elementami bilansowymi objętości reaktora.

Dla potrzeb dyskusji rozkłady wielkości flokuł przedstawiono w postaci zależności stacjonarnych skumulowanych udziałów frakcyjnych odniesionych do masy flokuł – od ich ekwiwalentnej średnicy; przy zachowaniu numeracji elementów bilansowych jak na rys. 1.

Na rys. 3 przedstawiono stacjonarne skumulowane udziały frakcyjne flokuł, wyznaczone metodą objętości skończonych oraz metodą momentów. Porównanie wyznaczonych przebiegów – uzyskanych w warunkach rekonstrukcji opartej o rozkład normalny, wskazuje wyraźne różnice – nie potwierdzając wyników uzyskanych przy zastosowaniu metody momentów. Jedynie dla średniej średnicy flokuł d_{50} , można uznać zgodność odwzorowania za zadowalającą.

Rys. 3. Porównanie odniesionych do masy flokuł stacjonarnych skumulowanych ich udziałów frakcyjnych, wyznaczonych dla pełnych równań bilansów populacji oraz metodą momentów, $c_p = 1,0$ g/dm³, $Re = 10^4$, rozkład normalny

Analizowany przypadek wyznaczony przy przeprowadzeniu transformacji odwrotnej w oparciu o rozkład *Gaudina-Melloya* dla $c_p = 0,5$ g/dm³ przy rekonstrukcji w metodzie momentów – przedstawiono na rys. 4.

INŻYNIERIA I APARATURA CHEMICZNA

Rys. 4. Porównanie stacjonarnych rozkładów wielkości flokuł w elementach bilansowych 1 i 18 uzyskanych przy wykorzystaniu metody objętości skończonych i metody momentów, $c_p = 1,0$ g/dm³, $Re = 10^4$, rozkład *Gaudina-Melloya*

Analiza przebiegów na rys. 5 wskazuje na uzyskanie szerokich funkcji rozkładu oraz zgodność wyników nie tylko dla d_{50} – lecz także dla pełnego zakresu dokonanych obliczeń symulacyjnych. Wykazane powyżej korzystne szerokie odwzorowanie funkcji rozkładu nie występuje przy niższych stężeniach cząstek pierwotnych z przedziału <0,25 ÷ 0,5 g/dm³>; co pozwala stwierdzić, że zarówno wartość mediany rozkładu, jak też odwzorowanie jest niezadowalające.

Podjęta próba wykorzystania rozkładu normalnego do transformacji – nie dała pozytywnych rezultatów w zakresie odwzorowania szerokości rozkładów, opisując jednakże poprawnie ustalającą się średnią średnicę flokuł.

Rys. 5. Porównanie stacjonarnych rozkładów wielkości flokuł obliczonych metodą objętości skończonych oraz metodą momentów dla $c_p = 0.5 \text{ g/dm}^3$ oraz $Re = 10^4$, rozkład normalny

Na kolejnym rys. 6 przedstawiono wyniki badań porównawczych dla stanu idealnego przemieszania w zbiorniku reaktora oraz z uwzględnieniem zmian szybkości dyssypacji energii kinetycznej w różnych elementach objętości bilansowych reaktora. Jako postać funkcji rozkładu do rekonstrukcji – przyjęto rozkład normalny.

Przedstawione na rys. 6 wyniki obliczeń symulacyjnych wskazują na występowanie znacznych różnic w przebiegu funkcji rozkładu. Założenie stanu idealnego przemieszania, wskazuje na występowanie rozkładu wielkości flokuł o znacznie większych wymiarach – co oznacza także błędne odwzorowanie wartości średnicy flokuł d_{50} .

Także wyznaczone przebiegi wartości skumulowanej przesiewu dla $Re = 2,2 \cdot 10^4$ – wskazują przy zastosowaniu metody momentów na dalsze zmniejszenie wartości d_{50} . Przyczynę stanowi fakt, że odwzorowanie wąskich rozkładów wielkości flokuł w oparciu o metodę momentów z rekonstrukcją według rozkładu *Gaudina-Melloya* nie znajduje odwzorowania w rzeczywistości.

Stwierdzono jednak, że przy niskich wartościach stężenia cząstek pierwotnych c_p oraz znacznych wartościach liczby *Reynoldsa Re* – stosowanie prezentowanych metod skutkuje złą jakością odwzorowania rzeczywistych rozkładów wielkości flokuł.

Rys. 6. Porównanie stacjonarnych rozkładów wielkości flokuł obliczonych dla elementów bilansowych oraz warunków idealnego przemieszania metodą momentów, $c_p = 1,0 \text{ g/dm}^3, Re = 10^4$, rozkład normalny

Podsumowanie

Analiza i dyskusja wyników pozwala stwierdzić, że zastosowana metoda pozwala z dobrym przybliżeniem odwzorować rzeczywiste rozkłady wielkości flokuł. Dokładność odwzorowania jest zależna od postaci założonej funkcji – będącej po rekonstrukcji podstawą odwzorowania. Zastosowanie rozkładu normalnego – skutkuje uzyskaniem zadowalającej dokładności oszacowania rozkładów wielkości flokuł; skracając czas obliczeń pięciokrotnie. Ostateczny efekt skrócenia czasu obliczeń numerycznych jest limitowany postacią równania kinetyki procesu flokulacji. Wykorzystanie rozkładu *Gaudina-Melloya* znajduje uzasadnienie w przypadku występowania "szerokich" rozkładów wielkości flokuł. Badania potwierdziły przydatność metody momentów do efektywnego szacowania oraz skrócenia czasu obliczeń, stanowiąc dobre i wygodne narzędzie do szacowania zmian rozkładów wielkości flokuł; stwarzając przesłanki sterowania procesem flokulacji.

LITERATURA

- Bałdyga J., Orciuch W., 2001. Barium Sulphate precipitation in a pipe an experimental study and CFD modelling. *Chem. Eng. Sci.*, 56, 2435-2444. DOI: 10.1016/S0009-2509(00)00449-8
- Dylag M., Rosiński J., Kamieński J., 2008a. Erstellung von Modellgleichungen zur Beschreibung von Partikelwechselwirkungen bei Flockungsprozessen, Teil 1: Grundlagen der Populationstheorie und des Rechenmodells. *Czasopismo Techniczne*, 5-M, 89-96
- Dyląg M., Rosiński J., Kamieński J., 2008b. Erstellung von Modellgleichungen zur Beschreibung von Partikelwechselwirkungen bei Flockungsprozessen, Teil 2: Populationsgleichungen der Flocken und der Primärpartikeln, *Czasopismo Techniczne*, 9-M, 3-18
- Dylag M., Rosiński J., Kamieński J., 2011. Anwendung des mittleren geschwindigkeitsgradienten auf die modellierung von flockungsprozessen [in:] Wozny G., Hady Ł. (ed.): Process Engineering and Chemical Plant Design 2011, Universitätverlag der TU Berlin, Berlin
- Jaworski Z., 2005. Numeryczna mechanika płynów w inżynierii chemicznej i procesowej, Akademicka Oficyna Wydawnicza EXIT, Warszawa
- McGraw R., 1997. Description of aerosol dynamics by the quadrature method of moments. *Aerosol Science and Technology*, 27, 255-265. DOI: 10.1080/02786829708965471
- Marchisio D.L., Vigil R.D., Fox R.O., 2003. Implementation of the quadrature method of moments in cfd codes for aggregation-breakage problems. *Chem. Eng. Sci.*, 58, 3337-3351. DOI: 10.1016/S0009-2509(03)00211-2
- Patankar S.V., 1980. Numerical heat transfer and fluid flow. Hemispheres Publishing Corporation, New York
- Ramkrishna D., 2000. Population balances: Theory application to particulate systems in engineering. Academic Press, San Diego
- Szatko W., Rosiński J., Kamieński J., Dyląg M., Wozny G., 2010. Über die sogenannte Momentenmethode hinsichtlich ihrer Anwendbarkeit zum Zweck der Modellreduktion von erstellten Populationsbilanzen, IX Międzynarodowa Konferencja Naukowa "Teoretyczne i Eksperymentalne Podstawy Budowy Aparatury", Iwanowo, Federacja Rosyjska, 28-30.09.2010, 204-214.

Praca została wykonana w ramach realizacji projektu badawczego 0264/B/ H03/2011/40 "Koagulacja i rozpad aglomeratów – identyfikacja i modelowanie wzajemnego oddziaływania cząstek ciała stałego i flokuł w warunkach stacjonarnego przepływu", finansowanego ze środków Narodowego Centrum Nauki.