PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power quality management in electrical grid using SCANN controller-based UPQC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrical grid integration takes great attention because of the increasing population in the nonlinear load connected to the power distribution system. This manuscript deals with the power quality issues and mitigations associated with the electrical grid. The proposed single comprehensive artificial neural network (SCANN) controller with unified power quality conditioner (UPQC) is modelled in MATLAB Simulink environment. It provides series and shunt compensation that helps mitigate voltage and current distortion at the end of the distribution system. Initially, four proportional integral (PI) controllers are used to control the UPQC. Later the trained SCANN controller replaces four PI Controllers for better control action. PI and SCANN controllers’ simulation results are compared to find the optimal solutions. A prototype model of SCANN controller is constructed and tested. The test results show that the SCANN based UPQC maintains grid voltage and current magnitude within permissible limits under fluctuating conditions.
Rocznik
Strony
art. no. e140257
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, Tamilnadu – 641049, India and Research Scholar (Electrical), Anna University, Chennai, Tamilnadu, India
  • Department of Electrical and Electronics Engineering, Government College of Technology, Coimbatore, Tamilnadu – 641049, India
Bibliografia
  • [1] E. Hossain et al., “Analysis and mitigation of power quality issues in distributed generation systems using custom power devices”, IEEE Access, vol. 6, pp. 16816–16833, 2018, doi: 10.1109/ACCESS.2018.2814981.
  • [2] J. Ye, H. Beng Gooi, and F. Wu, “Optimization of the size of UPQC system based on data-driven control design”, IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2999–3008, 2018, doi: 10.1109/TSG.2016.2624273.
  • [3] S. Chandrakala Devi, B. Singh, and S. Devassy, “Modified generalized integrator-based control strategy for solar PV fed UPQC enabling power quality improvement”, IET Gener. Transm. Distrib., vol. 14, no. 16, pp. 52–65, 2020, doi: 10.1049/iet-gtd.2019.1939.
  • [4] S. Silva et al., “Comparative performance analysis involving a three-phase UPQC operating with conventional and dual/inverted power-line conditioning strategies”, IEEE Trans. Power Electron., vol 35, no. 11, pp. 11652–11665, 2020, doi: 10. 1109/TPEL.2020.2985322.
  • [5] S.B. Karanki, M.K. Mishra and B.K. Kumar, “Particle swarm optimization-based feedback controller for unified power-quality conditioner”, in IEEE Trans. Power Del., vol. 25, no. 4, pp. 2814-2824, Oct. 2010, doi: 10.1109/TPWRD.2010.2047873.
  • [6] Y. Bouzelata, E. Kurt, R. Chenni, and N. Altın, “Design and simulation of a unified power quality conditioner fed by solar energy”, Int. J. Hydrogen Energy, vol. 40, no. 44, pp. 15267–15277, 2015, doi: 10.1016/j.ijhydene.2015.02.077.
  • [7] N. Kumarasabapathy and P.S. Manoharan, “MATLAB simulation of UPQC for power quality mitigation using an ant colony based fuzzy control technique”, Hindawi Publishing Corporation Scientific World J., vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/304165.
  • [8] S. Samal and P. Hota, “Power quality improvement by solar photovoltaic / wind energy integrated system using unified power quality conditioner”, Int. J. Power Electron. Drive Syst., vol. 8, no. 3, pp. 1416–1426, 2017, doi: 10.11591/ijpeds.v8.i3.pp1416–1426.
  • [9] M. Gwozdz, R. Wojciechowski, and L. Cieplinski, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter–Part 2”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, pp. 1–9, 2021, doi: 10.24425/bpasts.2021.137938.
  • [10] S. Vinnakoti and V.R. Kota, “Implementation of artificial neural network-based controller for a five-level converter based UPQC”, Alexandria Eng. J., vol. 57, no. 3, pp. 1475–1488, 2018, doi: 10.1016/j.aej.2017.03.027.
  • [11] A. Dheepanchakkravarthy et al., “Predictive current control of FL-shunt active power filter for dynamic and heterogeneous load compensation”, Electr. Eng., vol. 103, no. 4, pp. 2147–2460, 2021, doi: 0.1007/s00202-021-01224-6.
  • [12] N. Sangeetha, B. Gopinath, S. Muthulakshmi, M. Kalayanasundram, and G. Suriya, “A new approach to single phase AC microgrid system using UPQC device”, Bonfring Int. J. Softw. Eng. Soft Comput., vol. 8, no. 2, pp. 26–35, 2018, doi: 10.9756/BIJS-ESC.8392.
  • [13] A. Ali et al., “Performance evaluation of ZVS/ZCS high efficiency AC/DC converter for high power applications”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 793–807, 2020, doi: 10.24425/bpasts.2020.134185.
  • [14] A. Dheepanchakkravarthy, M.R. Jawahar, K. Venkatraman, M.P. Selvan, and S. Moorthi, “Performance evaluation of FPGA based predictive current controller for four-leg DSTATCOM in electric distribution system”, IET Gener. Transm. Distrib., vol. 13, no. 19, pp. 4400–4409, 2019, doi: 10.1049/iet-gtd.2019.0073.
  • [15] C.K. Sundarabalan, Y. Puttagunta, and V. Vignesh, “Fuel cell integrated unified power quality conditioner for voltage and current reparation in four-wire distribution grid”, IET Smart Grid, vol. 2, no. 1, pp. 60–68, 2019, doi: 10.1049/iet-stg.2018.0148.
  • [16] M. Ochoa-Gimenez, A. Garcia-Cerrada, J.L. Zamora-Macho, “Comprehensive control for unified power quality conditioners”, J. Mod. Power Syst. Clean Energy, vol. 5, pp. 609–619, 2017, doi: 10.1007/s40565-017-0303-2.
  • [17] U.K. Renduchintala and C. Pang, “Neuro-fuzzy based UPQC controller for Power Quality improvement in micro grid system”, IEEE/PES Transm. Distrib. Conf. Exposition, 2016, pp. 1–5, doi: 10.1109/TDC.2016.7519965.
  • [18] P. Falkowski, K. Kulikowski, and R. Grodzki, “Predictive and look-up table control methods of a three-level ac-dc converter under distorted grid voltage”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp.609–618, 2017, doi: 10.1515bpasts-2017-0066.
  • [19] B. Rahmani, W. Li, and G. Liu, “A wavelet-based unified power quality conditioner to eliminate wind turbine non-ideality consequences on grid-connected photovoltaic systems”, Energies, vol. 9, no. 6, pp. 390, 2016, doi: 10.3390/en9060390.
  • [20] P. Falkowski and A. Godlewska, “Finite control set MPC of LCL-filtered grid-connected power converter operating under grid distortions”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1069–1076, 2020, doi: 10.24425/bpasts.2020.134655.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1c40a13-654a-4588-ace3-8face94ac2a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.