PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Waste to Resource: Upcycling PET into High-Performance MOFs for Advanced Applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the non-degradable nature of polyethylene terephthalate (PET) and the widespread use in food packaging, clothing, and other fields of PET, discarded PET waste continues to accumulate globally, posing significant risks to both the environment and human health. Through chemical recycling methods, PET waste can be decomposed into terephthalic acid (TPA), which serves as an organic linker of metal-organic frameworks (MOFs) and demonstrates potential for achieving PET waste upcycling, thus garnering considerable attention. MOFs prepared from PET waste have been extensively applied in fields such as adsorption, catalysis, and energy storage. This review aims to analyze the latest research advancements concerning the MOFs prepared from PET waste to provide insights for further development in both the preparation and application of MOFs prepared from PET waste. The comprehensive analysis of this review highlights the innovative pathways toward addressing environmental challenges while enhancing the utility of recycled resources.
Czasopismo
Rocznik
Strony
10--23
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology Shenyang, China
autor
  • Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology Shenyang, China
Bibliografia
  • 1. Peti, D., Dobránsky, J. & Michalík, P. (2025). Recent Advances in Polymer Recycling: A Review of Chemical and Biological Processes for Sustainable Solutions. Polymers. 17 (5), 603. DOI: 10.3390/polym17050603.
  • 2. Wang, S., Zhou, Y., Wu, W. D., Hong, J. Y., Li, S. X. & Zhang, A. L. (2024). N, P co-doped carbon quantum dot and ammonium polyphosphate as the synergistic flame retardant for epoxy resin. J. Vinyl Addit. Technol. 30 (4), 1052–1065. DOI: 10.1002/vnl.22104.
  • 3. Wang, S. & Ma, R. M. (2025). Effect of phosphorus-containing silane coupling agents modified ammonium poly-phosphate on the flame retardancy and mechanical properties of epoxy resin. J. Appl. Polym. Sci. 142 (17), e56807. DOI: 10.1002/app.56807.
  • 4. Umdagas, L., Orozco, R., Heeley, K., Thom, W. & Al-Duri, B. (2025). Advances in chemical recycling of polyethylene terephthalate (PET) via hydrolysis: A comprehensive review. Polym. Degrad. Stab. 234, 111246. DOI: 10.1016/j.polymdegradstab.2025.111246.
  • 5. Li, X., Jiang, Z., Kou, Z., Wang, J. & Zheng, S. (2025). Cascade degradation and electrocatalytic upcycling of waste poly(ethylene terephthalate) to valued products. Nano Res. 18, 94907101. DOI: 10.26599/NR.2025.94907101.
  • 6. Sarangi, R., Swain, A. & Sahoo, S. (2025). A Review on formulation of polyester resin from recycled PET and its composite with the incorporation of metallic fillers: Utilization of recycled PET products. Polym. Adv. Technol. 36, e70138. DOI: 10.1002/pat.70138.
  • 7. Zdanowicz, M., Paszkiewicz, S. & El Fray, M. (2025). Polyesters and deep eutectic solvents: From synthesis through modification to depolymerization. Prog. Polym. Sci. 161, 101930. DOI: 10.1016/j.progpolymsci.2025.101930.
  • 8. Zhang, H., Xu, W., Meng, F., Zhao, Q., Qiao, Y. & Tian, Y. (2025). Chemical depolymerization based on PET waste. PROG CHEM. 37 (2), 226–234. DOI: 10.7536/PC240512.
  • 9. Yi, L., Miao, H., Dong, Y., Zhu, L., Li, J., Zhong, H. N. & Huang, Y. (2025). Behavior and removal of semi-volatile organic compounds during PET mechanical recycling processes. Food Packag. Shelf Life. 49, 101480. DOI: 10.1016/j. fpsl.2025.101480.
  • 10. Feng, Y., Lv, S. W., Zhang, R., Ren, X., Shen, J. & Cong, Y. (2025). From waste to wealth: Glycolysis of PET for high-value resource utilization. Waste Manage. 200, 114768. DOI: 10.1016/j.wasman.2025.114768.
  • 11. Lee, J. E., Lee, D., Lee, J. & Park, Y. K. (2025). Current methods for plastic waste recycling: Challenges and opportunities. Chemosphere. 370, 143978. DOI: 10.1016/j. chemosphere.2024.143978.
  • 12. Zhao, T., Chen, J., Xiao, P., Nie, S., Luo, F. & Chen, Y. (2025). Exploring metal-organic frameworks in battery electrodes, separators, and electrolytes: A comprehensive review. Coord. Chem. Rev. 532, 216501. DOI: 10.1016/j.ccr.2025.216501.
  • 13. Su, R., Yao, H., Wang, H., Chen, Y., Huang, S., Luo, Y. & Ma, X. (2025). Metal-organic frameworks for removing emerging organic pollutants: A review. Journal of Water Process Engineering. 70, 107096. DOI: 10.1016/j.jwpe.2025.107096.
  • 14. Huang, W. C., Li, Y., Chang, N. H., Hong, W. J., Wu, S. Y., Liao, S. Y. & Huang, C. Y. (2024). Highly stable and selective H2 gas sensors based on light-activated a-IGZO thin films with ZIF-8 selective membranes. Sens. Actuators, B. 417, 136175. DOI: 10.1016/j.snb.2024.136175.
  • 15. Li, P. & Zeng, H. C. (2016). Immobilization of metal-organic framework nanocrystals for advanced design of supported nanocatalysts. ACS Appl. Mater. Interfaces. 8 (43), 29551–29564. DOI: 10.1021/acsami.6b11775.
  • 16. Zuluaga, S., Fuentes-Fernandez, E. M., Tan, K., Xu, F., Li, J., Chabal, Y. J. & Thonhauser, T. (2016). Understanding and controlling water stability of MOF-74. J. Mater. Chem. A. 4 (14), 5176–5183. DOI: 10.1039/c5ta10416e.
  • 17. Pan, T., Shen, Y., Wu, P., Gu, Z., Zheng, B., Wu, J. & Huo, F. (2020). Thermal shrinkage behavior of metal-organic frameworks. Adv. Funct. Mater. 30 (34), 2001389. DOI: 10.1002/adfm.202001389.
  • 18. Tien, E. P., Cao, G., Chen, Y., Clark, N., Tillotson, E., Carter, J. H. & Haigh, S.J. (2024). Electron beam and thermal stabilities of MFM-300 (M) metal-organic frameworks. J. Mater. Chem. A. 12 (36), 24165–24174. DOI: 10.1039/d4ta03302g.
  • 19. Islam, M. S., Islam, Z., Hasan, R. & Islam Molla Jamal, A. S. (2023). Acidic hydrolysis of recycled polyethylene terephthalate plastic for the production of its monomer terephthalic acid. Prog. Rubber, Plast. Recycl. Technol. 39 (1), 12–25. DOI: 10.1177/14777606221128038.
  • 20. Someya, M., Iwaya, S. & Konno, H. (2024). Synthesis of PBT-derived metal-organic frameworks as adsorbents for water treatment. Colloids Surf., A. 703, 135418. DOI: 10.1016/j. colsurfa.2024.135418.
  • 21. McNeeley, A. & Liu, Y. A. (2024). Assessment of PET depolymerization processes for circular economy. 1. thermodynamics, chemistry, purification, and process design. Ind. Eng. Chem. Res. 63 (8), 3355–3399. DOI: 10.1021/acs.iecr.3c04000.
  • 22. Cho, E., Lee, S. Y., Choi, J. W., Kim, S. H. & Jung, K. W. (2021). Direct upcycling of polyethylene terephthalate (PET) waste bottles into α-Fe2O3 incorporated MIL-53 (Al) for the synthesis of Al2O3/Fe3O4-encapsulated magnetic carbon composite and efficient removal of non-steroidal anti-inflammatory drugs. Sep. Purif. Technol. 279, 119719. DOI: 10.1016/j.seppur.2021.119719.
  • 23. Ren, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., North, B. C., Mathe, M. & Onyango, M. S. (2016). Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications. Int. J. Hydrogen Energy. 41 (40), 18141–18146. DOI: 10.1016/j.ijhydene.2016.08.040.
  • 24. Vigneshwaran, S., Kim, D. G. & Ko, S. O. (2024). Porous biochar supported PET plastic waste MOF heterostructure as a novel, efficient and recyclable catalyst for acetaminophen degradation. Biochar. 6 (1), 1-18. DOI: 10.1007/s42773-024-00369-4.
  • 25. Chen, Y. H. & Huang, P. J. (2021). Sono-assisted rapid dye removal by chromium-based metal organic frameworks derived from waste PET bottles: Characterization, kinetics and adsorption isotherms. J. Environ. Chem. Eng. 9 (6), 106766. DOI: 10.1016/j.jece.2021.106766.
  • 26. Yun, L. X., Qiao, M., Zhang, B., Zhang, H. T. & Wang, J. X. (2024). Upcycling plastic wastes into high-performance nano-MOFs by efficient neutral hydrolysis for water adsorption and photocatalysis. J. Mater. Chem. A. 12 (30), 19452–19461. DOI: 10.1039/d4ta02597k.
  • 27. Kalimuthu, P., Kim, Y., Subbaiah, M. P., Kim, D., Jeon, B. H. & Jung, J. (2022). Comparative evaluation of Fe-, Zr-, and La-based metal-organic frameworks derived from recycled PET plastic bottles for arsenate removal. Chemosphere. 294, 133672. DOI: 10.1016/j.chemosphere.2022.133672.
  • 28. Zhou, L., Wang, S., Chen, Y. & Serre, C. (2019). Direct synthesis of robust hcp UiO-66 (Zr) MOF using poly (ethylene terephthalate) waste as ligand source. Microporous Mesoporous Mater. 290, 109674. DOI: 10.1016/j.micromeso.2019.109674.
  • 29. Li, J., Zhang, S., Hua, Y., Lin, Y., Wen, X., Mijowska, E. & Ruoff, R. S. (2024). Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53 (Al) and its application for high-performance Zn-ion capacitor. Green Energy Environ. 9 (7), 1138–1150. DOI: 10.1016/j.gee.2023.01.002.
  • 30. Yu, H., Duan, H., Chen, L., Zhu, W., Baranowska, D., Hua, Y. & Chen, X. (2024). Upcycling waste polyethylene terephthalate to produce nitrogen-doped porous carbon for enhanced capacitive deionization. Molecules. 29 (20), 4934. DOI: 10.3390/molecules29204934.
  • 31. Kim, D., Kalimuthu, P., Lee, S. M., Jung, J. & Elanchezhiyan, S. S. (2025). Utilization of waste PET-derived metal-organic framework grafted polyaniline composite for heavy metal adsorption from aqueous solution. J. Ind. Eng. Chem. 144, 663–671. DOI: 10.1016/j.jiec.2024.10.011.
  • 32. Zhao, Y., Li, D., Ni, X., Cai, P., Chen, G., Xia, D. & Yuan, H. (2025). Waste PET plastic-mediated synthesis of manganeseand cobalt-doped RuO2 catalyst for electro-oxidation of water with robust stability. Resour., Conserv. Recycl. 215, 108056. DOI: 10.1016/j.resconrec.2024.108056.
  • 33. Gong, Z., Dai, Z., Dong, Z., Liu, Q., Milichko, V. A., Liu, H. & Gong, J. (2024). Green synthesis of luminescent La-MOF nanoparticle from waste poly (ethylene terephthalate) for high-performance in Fe (III) detection. Rare Met. 43 (8), 3833–3843. DOI: 10.1007/s12598-024-02696-8.
  • 34. He, P., Hu, Z., Dai, Z., Bai, H., Fan, Z., Niu, R. & Tang, T. (2023). Mechanochemistry milling of waste poly (Ethylene terephthalate) into metal-organic frameworks. ChemSusChem. 16 (2), e202201935. DOI: 10.1002/cssc.202201935.
  • 35. Jery, A. E., Pecho, R. D. C., Tania Churampi Arellano, M., Aldrdery, M., Elkhaleefa, A., Wang, C. & Tizkam, H. H. (2023). Transforming waste into value: eco-friendly synthesis of MOFs for sustainable PFOA remediation. Sustainability. 15 (13), 10617. DOI: 10.3390/su151310617.
  • 36. Waribam, P., Katugampalage, T. R., Opaprakasit, P., Ratanatawanate, C., Chooaksorn, W., Wang, L. P., ... & Sreearunothai, P. (2023). Upcycling plastic waste: Rapid aqueous depolymerization of PET and simultaneous growth of highly defective UiO-66 metal-organic framework with enhanced CO2 capture via one-pot synthesis. Chem. Eng. J. 473, 145349. DOI: 10.1016/j.cej.2023.145349.
  • 37. Nason, A. K., Phamonpon, W., Pitt, T. A., Jerozal, R.T., Milner, P. J., Rodthongkum, N. & Suntivich, J. (2024). Reactive depolymerization of polyethylene terephthalate textiles into metal-organic framework intermediates produces additive-free monomers. Chem. Mater. 36 (20), 10319–10326. DOI: 10.1021/acs.chemmater.4c02286.
  • 38. Ngo, H. L., Le, T. T., Cao, V. D., Nguyen, H. K. A., Nguyen, N. T., Nguyen, M. L. & Nguyen, T. T. (2025). Conversion of polyethylene terephthalate plastic into metal-organic framework materials for the adsorption of organic dyes. Environ. Eng. Sci. 42 (3), 126–136. DOI: 10.1089/ees.2024.0324.
  • 39. Albinsson, D., Bartling, S., Nilsson, S., Ström, H., Fritzsche, J. & Langhammer, C. (2021). Shedding light on CO oxidation surface chemistry on single Pt catalyst nanoparticles inside a nanofluidic model pore. ACS Catal. 11 (4), 2021–2033. DOI: 10.1021/acscatal.0c04955.
  • 40. Byrne, E., Schaerer, L. G., Kulas, D. G., Ankathi, S. K., Putman, L. I., Codere, K. R. & Techtmann, S. M. (2022). Pyrolysis-aided microbial biodegradation of high-density polyethylene plastic by environmental inocula enrichment cultures. ACS Sustain. Chem. Eng. 10 (6), 2022–2033. DOI: 10.1021/acssuschemeng.1c05318.
  • 41. Farshchi, M. E., Bozorg, N. M., Ehsani, A., Aghdasinia, H., Chen, Z., Rostamnia, S. & Ni, B. J. (2023). Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol. J. Environ. Manag. 345, 118842. DOI: 10.1016/j.jenvman.2023.118842.
  • 42. Bai, H., He, P., Hao, L., Fan, Z., Niu, R., Tang, T. & Gong, J. (2023). Waste-treating-waste: upcycling discarded polyester into metal-organic framework nanorod for synergistic interfacial solar evaporation and sulfate-based advanced oxidation process. Chem. Eng. J. 456, 140994. DOI: 10.1016/j. cej.2022.140994.
  • 43. Dubey, P., Shrivastav, V., Maheshwari, P. H., Hołdyński, M., Krawczyńska, A. & Sundriyal, S. (2023). Comparative study of different metal-organic framework electrodes synthesized using waste PET bottles for supercapacitor applications. Journal of Energy Storage. 68, 107828. DOI: 10.1016/j.est.2023.107828.
  • 44. Chinglenthoiba, C., Mahadevan, G., Zuo, J., Prathyumnan, T. & Valiyaveettil, S. (2024). Conversion of PET bottle waste into a terephthalic acid-based metal-organic framework for removing plastic nanoparticles from water. Nanomater. 14 (3), 257. DOI: 10.3390/nano14030257.
  • 45. Alhokbany, N., Ahmed, J., Ubaidullah, M., Mutehri, S., Khan, M. M., Ahamad, T. & Alshehri, S. M. (2020). Cost-effective synthesis of NiCo2O4@nitrogen-doped carbon nanocomposite using waste PET plastics for high-performance supercapacitor. J. Mater. Sci.:Mater. Electron. 31, 16701–16707. DOI: 10.1007/s10854-020-04224-7.
  • 46. Keshta, B. E., Yu, H., Wang, L. & Gemeay, A. H. (2024). Cutting-edge in the green synthesis of MIL-101 (Cr) MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye. Sep. Purif. Technol. 332, 125744. DOI: 10.1016/j.seppur.2023.125744.
  • 47. Pham, X. N., Vu, V. T., Nguyen, H. V. T., Nguyen, T. T. B. & Doan, H. V. (2022). Designing a novel heterostructure AgInS2@ MIL-101 (Cr) photocatalyst from PET plastic waste for tetracycline degradation. Nanoscale Adv. 4 (17), 3600–3608. DOI: 10.1039/d2na00371f.
  • 48. Cheng, S., Li, Y., Yu, Z. & Su, Y. (2025). Efficient adsorption removal of anionic dyes by waste PET-derived MIL-101 (Cr). Sep. Purif. Technol. 354, 128985. DOI: 10.1016/j. seppur.2024.128985.
  • 49. Song, K., Qiu, X., Han, B., Liang, S. & Lin, Z. (2021). Efficient upcycling electroplating sludge and waste PET into Ni-MOF nanocrystals for the effective photoreduction of CO2. Environ. Sci.:Nano. 8 (2), 390–398. DOI: 10.1039/d0en01061h.
  • 50. Makhanya, N. P., Oboirien, B., Musyoka, N., Ren, J. & Ndungu, P. (2023). Evaluation of PET-derived metal organic frameworks (MOFs) for water adsorption and heat storage. J. Porous Mater. 30 (2), 387–401. DOI: 10.1007/s10934-022-01351-w.
  • 51. Kaur, R., Marwaha, A., Chhabra, V. A., Kaushal, K., Kim, K. H. & Tripathi, S. K. (2020). Facile synthesis of a Cu-based metal-organic framework from plastic waste and its application as a sensor for acetone. J. Cleaner Prod. 263, 121492. DOI: 10.1016/j.jclepro.2020.121492.
  • 52. Wang, Y., Meng, K., Wang, H., Si, Y., Bai, K. & Sun, S. (2023). Green synthesis of CoZn-based metal-organic framework (CoZn-MOF) from waste polyethylene terephthalate plastic as a high-performance anode for lithium-ion battery applications. ACS Appl. Mater. Interfaces. 16 (1), 819–832. DOI: 10.1021/acsami.3c15792.
  • 53. Sharma, M., Sharma, P., Janu, V. C. & Gupta, R. (2024). Harnessing waste PET bottles for sustainable Ca-MOF synthesis: a high-efficiency adsorbent for uranium and thorium. J. Mater. Chem. A. 12 (39), 26833–26847. DOI: 10.1039/d4ta05010j.
  • 54. Boukayouht, K., Bazzi, L., Daouli, A., Maurin, G. & El Hankari, S. (2024). Ultrarapid and sustainable synthesis of trimetallic-based MOF (CrNiFe-MOF) from stainless steel and disodium terephthalate-derived PET wastes. ACS Appl. Mater. Interfaces. 16 (2), 2497–2508. DOI: 10.1021/acsami.3c15669.
  • 55. Karamat, S., Akhter, T., Hassan, S. U., Faheem, M., Mahmood, A., Al-Masry, W. & Park, C. H. (2024). Recycling of polyethylene terephthalate to bismuth-embedded bimetallic MOFs as photocatalysts toward removal of cationic dye in water. J. Ind. Eng. Chem. 137, 503–513. DOI: 10.1016/j. jiec.2024.03.037.
  • 56. Yeganeh, M., Hatefi-Mehrjardi, A., Esrafili, A. & Sobhi, H. R. (2025). Recycling of polyethylene terephthalate waste bottles and zinc-carbon used batteries for preparation a MOF-based catalyst: Application in photodegradation of organophosphorus pesticides. J. Photochem. Photobiol., A. 466, 116388. DOI: 10.1016/j.jphotochem.2025.116388.
  • 57. Zhou, F., He, D., Ren, G. & Yarahmadi, H. (2024). Sustainable conversion of polyethylene plastic bottles into terephthalic acid, synthesis of coated MIL-101 metal-organic framework and catalytic degradation of pollutant dyes. Sci. Rep. 14 (1), 12832. DOI: 10.1038/s41598-024-60363-5.
  • 58. Yarahmadi, H., Salamah, S. K. & Kheimi, M. (2023). Synthesis of an efficient MOF catalyst for the degradation of OPDs using TPA derived from PET waste bottles. Sci. Rep. 13 (1), 19136. DOI: 10.1038/s41598-023-46635-6.
  • 59. Prabu, S., Vinu, M., Mariappan, A., Dharman, R. K., Oh, T. H. & Chiang, K. Y. (2024). Synthesis of Cr (OH)3/ZrO2@Co-based metal-organic framework from waste poly (ethylene terephthalate) for hydrogen production via formic acid dehydrogenation at low temperature. Ceram. Int. 50 (13), 24293–24301. DOI: 10.1016/j.ceramint.2024.04.159.
  • 60. Villarroel-Rocha, D., Bernini, M. C., Arroyo-Gómez, J. J., Villarroel-Rocha, J. & Sapag, K. (2022). Synthesis of MOF-5 using terephthalic acid as a ligand obtained from polyethylene terephthalate (PET) waste and its test in CO2 adsorption. Braz. J. Chem. Eng. 39 (4), 949–959. DOI: 10.1007/s43153-021-00192-5.
  • 61. Al-Enizi, A. M., Ubaidullah, M., Ahmed, J., Ahamad, T., Ahmad, T., Shaikh, S. F. & Naushad, M. (2020). Synthesis of NiOx@NPC composite for high-performance supercapacitor via waste PET plastic-derived Ni-MOF. Composites, Part B. 183, 107655. DOI: 10.1016/j.compositesb.2019.107655.
  • 62. Jindakaew, J., Ratanatawanate, C., Erwann, J., Kaewsaneha, C., Sreearunothai, P., Opaprakasit, P. & Elaissari, A. (2024). Upcycling of post-consumer polyethylene terephthalate bottles into aluminum-based metal-organic framework adsorbents for efficient orthophosphate removal. Sci. Total Environ. 935, 173394. DOI: 10.1016/j.scitotenv.2024.173394.
  • 63. Cheng, S., Li, Y., Yu, Z., Gu, R., Wu, W. & Su, Y. (2024). Waste PET-derived MOF-5 for high-efficiency removal of tetracycline. Sep. Purif. Technol. 339, 126490. DOI: 10.1016/j. seppur.2024.126490.
  • 64. Al-Enizi, A. M., Nafady, A., Alanazi, N. B., Abdulhameed, M. M. & Shaikh, S. F. (2024). Waste polyethylene terephthalate plastic derived Zn-MOF for high performance supercapacitor application. J King Saud Univ Sci. 36 (5), 103179. DOI: 10.1016/j. jksus.2024.103179.
  • 65. Al-Enizi, A. M., Nafady, A., Alanazi, N. B., Abdulhameed, M. M. & Shaikh, S. F. (2024). Waste polyethylene terephthalate plastic derived Zr-MOF for high performance supercapacitor applications. Chemosphere. 350, 141080. DOI: 10.1016/j.chemosphere.2023.141080.
  • 66. Zhang, F., Chen, S., Nie, S., Luo, J., Lin, S., Wang, Y. & Yang, H. (2019). Waste PET as a reactant for lanthanide MOF synthesis and application in sensing of picric acid. Polymers. 11 (12), 2015. DOI: 10.3390/polym11122015.
  • 67. Wang, Y., Wang, H., Li, S. & Sun, S. (2022). Waste PET plastic-derived CoNi-based metal-organic framework as an anode for lithium-ion batteries. ACS omega. 7 (39), 35180–35190. DOI: 10.1021/acsomega.2c04264.
  • 68. De Smit, C., Sharma, S. Umar A., Jha, M., Metha, S. & Kansal, S. (2027). Nanocuboidal-shaped zirconium based metal organic framework (UiO-66) for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase. New J. Chem. 42, 1921–1930. DOI: 10.1039/C7NJ03851H.
  • 69. Farshchi, M. E., Bozorg, N. M., Ehsani, A., Aghdasinia, H., Chen, Z., Rostamnia, S. & Ni, B. J. (2023). Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol. J. Environ. Manage. 345, 118842. DOI: 10.1016/j.jenvman.2023.118842.
  • 70. Roy, P. K., Ramanan, A. & Rajagopal, C. (2013). Post consumer PET waste as potential feedstock for metal organic frameworks. Mater. Lett. 106, 390-392. DOI: 10.1016/j. matlet.2013.05.058.
  • 71. Jung, K. W., Kim, J. H. & Choi, J. W. (2020). Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride. Composites, Part B. 187, 107867. DOI: 10.1016/j. compositesb.2020.107867.
  • 72. Cao, Z., Fu, X., Li, H., Pandit, S., Amombo Noa, F. M., Öhrström, L. & Mijakovic, I. (2023). Synthesis of metal-organic frameworks through enzymatically recycled polyethylene terephthalate. ACS Sustainable Chem. Eng. 11 (43), 15506–15512. DOI: 10.1021/acssuschemeng.3c05222.
  • 73. Chan, K. & Zinchenko, A. (2023). Design and synthesis of functional materials by chemical recycling of waste polyethylene terephthalate (PET) plastic: Opportunities and challenges. J. Cleaner Prod. 433, 139828. DOI: 10.1016/j.jclepro.2023.139828.
  • 74. Heng, Y., Fang, Z., Li, J., Luo, L., Zheng, M. & Huang, H. (2023). Defective metal-organic framework derived from the waste plastic bottles for rapid and efficient nitroimidazole antibiotics removal. J. Colloid Interface Sci. 650, 836–845. DOI: 10.1016/j.jcis.2023.07.049.
  • 75. Mahesh, Y., Panwar, J. & Gupta, S. (2024). Remediation of multifarious metal ions and molecular docking assessment for pathogenic microbe disinfection in aqueous solution by waste-derived Ca-MOF. Environ. Sci. Pollut. Res. 31 (14), 21545–21567. DOI: 10.1007/s11356-024-32311-3.
  • 76. Priyadarshini, M., Ahmad, A. & Ghangrekar, M. M. (2023). Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe3O4@C incorporated MIL-53 (Fe) as a novel electro-fenton catalyst for the degradation of salicylic acid. Environ. Pollut. 322, 121242. DOI: 10.1016/j. envpol.2023.121242.
  • 77. Priyadarshini, M., Ahmad, A. & Ghangrekar, M. M. (2023). Efficacious degradation of ethylene glycol in baffled ozonation reactor in the presence of waste-derived MIL-53 (Al/Fe)-metal-organic framework derived Al2O3/Fe3O4. J. Environ. Chem. Eng. 11 (5), 110754. DOI: 10.1016/j.jece.2023.110754.
  • 78. Wang, S. & Wang, X. R. (2025). Synergistic flame retardancy of MIL-88B-Fe metal-organic framework with aluminum diethyl hypophosphite in epoxy resin. J. Vinyl Addit. Technol. 1–15. DOI: 10.1002/vnl.22210.
  • 79. Ma, C., Gong, J., Zhao, S., Liu, X., Mu, X., Wang, Y. & Tang, T. (2022). One-pot green mass production of hierarchically porous carbon via a recyclable salt-templating strategy. Green Energy Environ. 7 (4), 818–828. DOI: 10.1016/j.gee.2020.12.004.
  • 80. Wang, S., Dou, J., Holze, R., Zhang, T., Ye, L., Duan, L. & Chen, X. (2023). Recent progress in polymer waste-derived porous carbon for supercapacitors. ChemElectroChem. 10 (20), e202300223. DOI: 10.1002/celc.202300223.
  • 81. Gao, Y., Li, J., Hua, Y., Yang, Q., Holze, R., Mijowska, E. & Chen, X. (2024). Recent advances of metal fluoride compounds cathode materials for lithiumion batteries: a review. Mater. Futures. 3, 032101. DOI: 10.1088/2752-5724/ad4572.
  • 82. Wang, S., Xue, J. & Chen, X. C. (2025). Assembly of high-performance zinc-ion hybrid capacitor using soy residue-derived porous carbon as cathode and HCl treated zinc foil as anode. J. Energy Storage. 114, 115616. DOI: 10.1016/j.est.2025.115616.
  • 83. Wang, S. & Duan, L. (2025). Application of porous carbon materials prepared from polyurethane foam waste in zinc-ion hybrid capacitors. J. Mater. Sci. 1–11. DOI: 10.1007/s10853-025-10837-2.
  • 84. Dong, Z. M., Dou, J. L., Ye, L., Jiang, X., Jiao, L., Liu, X. & Wang, S. (2024). Porous carbon materials prepared from potassium citrate for zinc-ion capacitor: Effect of preparation method. J. Electron. Mater. 53 (12), 7762-7772. DOI: 10.1007/s11664-024-11537-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1c3071f-4d83-47f7-ade1-0904eef2a98e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.