PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vegetated kinetic façade – monographic review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Roślinna fasada kinetyczna – przegląd problematyki
Języki publikacji
EN
Abstrakty
EN
Vertical green façades and kinetic façades are environmentally friendly and energy efficient construction technologies that have gained popularity in recent years. Vegetated kinetic façades are a relatively new façade concept that can combine the positive features of these two systems, while the research on them is limited. The aim of this study is to identify the new opportunities and the most promising concepts of vegetated kinetic façades in terms of environmental sustainability and user comfort. In this article, technologies and design trends developed in the last decade are examined for vertical green façade systems and kinetic façades through literature review followed by the comparative analysis. Based on the results of the comparative analysis of vertical green façades and kinetic façades, the author will discuss potential risks and disadvantages of vegetated kinetic façade concepts. The conclusions go beyond the main benefits of vegetated kinetic façades such as energy efficiency, daylight control and outdoor air quality improvement, to present additional potential advantages such as energy generation, rainwater collection and carbon sequestration.
PL
Pionowe zielone fasady i fasady kinetyczne to przyjazne dla środowiska i energooszczędne technologie budowlane, które zyskały popularność w ostatnich latach. Roślinne fasady kinetyczne są stosunkowo nową koncepcją elewacji, która może łączyć pozytywne cechy tych dwóch systemów, podczas gdy badania nad nimi są ograniczone. Celem niniejszego badania była identyfikacja nowych możliwości i najbardziej obiecujących koncepcji wegetacyjnych fasad kinetycznych pod względem zrównoważenia środowiskowego i komfortu użytkownika. W niniejszym artykule przeanalizowano technologie i trendy projektowe opracowane w ostatniej dekadzie dla pionowych systemów zielonych fasad i fasad kinetycznych poprzez przegląd literatury, a następnie analizę porównawczą. Na podstawie wyników analizy porównawczej pionowych zielonych fasad i fasad kinetycznych autorka omówiła ich potencjalne wady w celu wyboru optymalnych rozwiązań. We wnioskach przedstawiono nie tylko główne walory roślinnych fasad kinetycznych, takie jak efektywność energetyczna, kontrola światła dziennego i poprawa jakości powietrza na zewnątrz, ale także dodatkowe potencjalne korzyści płynące z ich zastosowania, takie jak wytwarzanie energii, zbieranie wody deszczowej i sekwestracja dwutlenku węgla.
Czasopismo
Rocznik
Tom
Strony
85--93
Opis fizyczny
Bibliogr. 45 poz., il.
Twórcy
  • Doctoral School of Wrocław University of Science and Technology, Poland
Bibliografia
  • [1] Radić M., Brković Dodig M., Auer T., Green façades and living walls – a review establishing the classification of construction types and mapping the benefits, “Sustainability” 2019, 11(17), 4579, doi: 10.3390/su11174579.
  • [2] Medl A., Stangl R., Florineth F., Vertical greening systems – a review on recent technologies and research advancement, “Building and Environment” 2017, Vol. 125, 227–239, doi: 10.1016/j.build-env.2017.08.054.
  • [3] Bustami R.A., Belusko M., Ward J., Beecham S., Vertical greenery systems: A systematic review of research trends, “Building and Environment” 2018, Vol. 146, 226–237, doi: 10.1016/j.buildenv.2018.09.045.
  • [4] Ascione F., De Masi R.F., Mastellone M., Ruggiero S., Vanoli G.P., Green walls, a critical review: knowledge gaps, design parameters, thermal performances and multi-criteria design approaches, “Energies” 2020, 13(9), 2296, doi: 10.3390/en13092296.
  • [5] Wang P., Wong Y.H., Tan C.Y., Li S., Chong W.T., Vertical greening systems: technological benefits, progresses and prospects, “Sustainability” 2022, 14(20), 12997, doi: 10.3390/su142012997.
  • [6] Tabadkani A., Roetzel A., Li H.X., Tsangrassoulis A., Design approaches and typologies of adaptive façades. A review, “Automation in Construction” 2021, Vol. 121, 103450, doi: 10.1016/j.autcon.2020.103450.
  • [7] Bedon C., Honfi D., Machalická K.V. et al., Structural characterisation of adaptive façades in Europe. Part I: Insight on classification rules, performance metrics and design methods, “Journal of Building Engineering” 2019, Vol. 25, 100721, doi: 10.1016/j.jobe.2019.02.013.
  • [8] Matin N., Eydgahi A., Technologies used in responsive façade systems: a comparative study, “Intelligent Buildings International” 2019, Vol. 14, Iss. 1, doi: 10.1080/17508975.2019.1577213.
  • [9] Hosseini S.M., Mohammadi M., Rosemann A., Schröder T., Lichtenberg J., A morphological approach for kinetic façade design process to improve visual and thermal comfort. Review, “Building and Environment” 2019, Vol. 153, 186–204, doi: 10.1016/j.build-env.2019.02.040.
  • [10] Andrews L., Rottle N., Deploying living walls as kinetic façades, “Journal of Living Architecture” 2017, Vol. 4, No. 2, 17–31, doi: 10.46534/jliv.2017.04.02.017.
  • [11] Nowysz A., Urban vertical farm – introduction to the subject and discussion of selected examples, “Acta Scientiarum Polonorum Architectura” 2021, Vol. 20, Iss. 4, 93–100, doi: 10.22630/aspa.2021.20.4.38.
  • [12] Sanchez M.M., Kinetic Green Wall System Applications on Reducing Carbon Emissions in Hot-Arid Climates, MA thesis, University of Arizona, 2017, http://hdl.handle.net/10150/626722 [accessed: 25.11.2023].
  • [13] Globa A., Costin G. Tokede O., Wang R., Khoo C.K., Moloney J., Hybrid kinetic façade: fabrication and feasibility evaluation of fullscale prototypes, “Architectural Engineering and Design Management” 2021, Vol. 18, Iss. 6, 1–21, doi: 10.1080/17452007.2021.1941739.
  • [14] Zheng X., Dai T., Tang M., An experimental study of vertical greenery systems for window shading for energy saving in summer, “Journal of Cleaner Production” 2020, Vol. 259, 120708, doi: 10.1016/j.jclepro.2020.120708.
  • [15] Seyrek Şık C.I., Woźniczka A., Widera B., A conceptual framework for the design of energy-efficient vertical green façades, “Energies” 2022, 15(21), 8069, doi: 10.3390/en15218069.
  • [16] Seyrek C.I., Widera B., Woźniczka A., Sustainability-related parameters and decision support tools for kinetic green façades, “Sustainability” 2021, 13(18), 10313, doi: 10.3390/su131810313.
  • [17] Manso M., Castro-Gomes J., Green wall systems: a review of their characteristics, “Renewable and Sustainable Energy Reviews” 2015, Vol. 41, 863–871, doi: 10.1016/j.rser.2014.07.203.
  • [18] Perini K., Ottelé M., Haas E., Raiteri R., Vertical greening systems, a process tree for green façades and living walls, “Urban Ecosystems” 2013, Vol. 16, 265–277, doi: 10.1007/s11252-012-0262-3.
  • [19] Yan F., Shen J., Zhang W., Ye L., Lin X., A review of the application of green walls in the acoustic field, “Building Acoustics” 2022, Vol. 29, Iss. 2, 295–313, doi: 10.1177/1351010X221096789.
  • [20] Schinkel U., Becker N., Trapp M., Speck M., Assessing the Contribution of Innovative Technologies to Sustainable Development for Planning and Decision-Making Processes: A Set of Indicators to Describe the Performance of Sustainable Urban Infrastructures (ISI), “Sustainability” 2022, 14(4), 1966, doi: 10.3390/su14041966.
  • [21] Meng X., Yan L., Liu F., A new method to improve indoor environment: Combining the living wall with air-conditioning, “Building and Environment” 2022, Vol. 216, 108981, doi: 10.1016/j.buildenv.2022.108981.
  • [22] Davis M.J.M., Ramirez F., Pérez M.E., More than just a Green Façade: Vertical Gardens as Active Air Conditioning Units, “Procedia Engineering” 2016, Vol. 145, 1250–1257, doi: 10.1016/j.proeng.2016.04.161.
  • [23] Li X., Zhou J., Tang Y. et al., A hydroponic vertical greening system for disposal and utilization of pre-treated Blackwater: Optimization of the operating conditions, “Ecological Engineering” 2022, Vol. 183, 106739, doi: 10.1016/j.ecoleng.2022.106739.
  • [24] Irga P.J., Torpy F.R., Griffin D., Wilkinson S.J., Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation, “Sustainability” 2023, 15(7), 6014, doi: 10.3390/su15076014.
  • [25] Cortês A., Tadeu A., Santos M.I., de Brito J., Almeida J., Innovative module of expanded cork agglomerate for green vertical systems, “Building and Environment” 2021, Vol. 188, 107461, doi: 10.1016/j.buildenv.2020.107461.
  • [26] Riley B., de Larrard F., Malécot V., Dubois-Brugger I., Lequay H., Lecomte G., Living concrete: Democratizing living walls, “ Science of The Total Environment” 2019, Vol. 673, 281–295, doi: 10.1016/j.scitotenv.2019.04.065.
  • [27] Bae J.Y., Park D., Weeping Brick: The Modular Living Wall System Using 3D Printed Porous Ceramic Materials, [in:] J.H. Lee (ed.), Computer-Aided Architectural Design, “Hello, Culture”, Daejeon 2019, Republic of Korea, June 26–28, 2019, Selected Papers, Springer, Singapore 2019, 399–409, doi: 10.1007/978-981-13-8410-3_28.
  • [28] Perez Urrestarazu L., Egea G., Franco-Salas A., Fernandez-Canero R., Irrigation Systems Evaluation for Living Walls, “Journal of Irrigation and Drainage Engineering” 2014, 140(4), 04013024-1/11, doi: 10.1061/(ASCE)IR.1943-4774.0000702.
  • [29] Riley B., The state of the art of living walls: Lessons learned, “Building and Environment” 2017, Vol. 114, 219–232, doi: 10.1016/j.buildenv.2016.12.016.
  • [30] Xie L., Shu X., Kotze D.J., Kuoppamäki K., Timonen S., Lehvävirta S., Plant growth-promoting microbes improve stormwater retention of a newly-built vertical greenery system, “Journal of Environmental Management” 2022, Vol. 323, 116274, doi: 10.1016/j.jenvman.2022.116274.
  • [31] Alsaad H., Hartmann M., Voelker C., The effect of a living wall system designated for greywater treatment on the hygrothermal performance of the façade, “Energy and Buildings” 2022, Vol. 255, 111711, doi: 10.1016/j.enbuild.2021.111711.
  • [32] Charoenkit S., Yiemwattana S., The performance of outdoor plants in living walls under hot and humid conditions, “Landscape and Ecological Engineering” 2021, Vol. 17, 55–73, doi: 10.1007/s11355-020-00433-8.
  • [33] Bustami R.A., Beecham S., Hopeward J., The influence of plant type, substrate and irrigation regime on living wall performance in a semi-arid climate, “Environments” 2023, 10(2), 26, doi: 10.3390/environments10020026.
  • [34] Decker M., Zarzycki A., Designing resilient buildings with emergent materials, [in:] E.M. Thompson (ed.), Fusion – Proceedings of the 32 nd International Conference on Education and research in Computer aided Architectural Design in Europe, Newcastle upon Tyne, England, UK, 10-12 September 2014, Vol. 2, Northumbria University, Newcastle 2014, 179–184, doi: 10.13140/2.1.1060.8967.
  • [35] Capeluto G., Ochoa C., Intelligent envelopes for high performance buildings: Design and strategy, Springer, Cham 2017, doi: 10.1007/978-3-319-39255-4.
  • [36] Fox M., Interactive Architecture: Adaptive World, Princeton Architectural Press, New York 2016.
  • [37] Grobman J., Yekutiel T., Autonomous movement of kinetic cladding components in building façades, [in:] A. Chakrabarti, R. Prakash (eds.), ICoRD’13. Lecture Notes in Mechanical Engineering, Springer, Chennai 2013, doi: 10.1007/978-81-322-1050-4_84.
  • [38] Aelenei L., Aelenei D., Romano R., Mazzucchelli E.S., Brzezicki M., Rico-Martinez J.M., Case Studies: Adaptive Façade Network, TU Delft Open 2018.
  • [39] Tabasi S.F., Banihashemi S., Design and mechanism of building responsive skins: State-of-the-art and systematic analysis, “Frontiers of Architectural Research” 2022, Vol. 11, Iss. 6, 1151–1176, doi: 10.1016/j.foar.2022.05.006.
  • [40] Lienhard J., Schleicher S., Poppinga S. et al., Flectofin: a hinge less flapping mechanism inspired by nature, “Bioinspiration and Biomimetics” 2011, Vol. 6, No. 4, 045001, doi: 10.1088/1748-3182/6/4/045001.
  • [41] Gonzalez E.A., Moser S., Körner A. et al., Advancing solar control and energy harvesting through the use of pneumatically actuated elastic adaptive faҫades, [in:] D.A. Saravanos, A. Benjeddou, N. Chrysochoidis, T. Theodosiou (eds.), X ECCOMAS Thematic Conference on Smart Structures and Materials SMART 2023, 3–5 July 2023, Patras, Greece, Eccomas Proceedia, 744–756, doi: 10.7712/150123.9828.444680.
  • [42] Nagy Z., Svetozarevic B., Jayathissa P. et al., The adaptive solar façade: From concept to prototypes, “Frontiers of Architectural Research” 2016, Vol. 5, Iss. 2, 143–156, doi: 10.1016/j.foar.2016.03.002
  • [43] Correa D., Krieg O.D., Menges A., Reichert S., Rinderspacher K., HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood, [in:] ACADIA 2013 Adaptive Architecture: Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture, October 21–27, 2013, Cambridge, Ontario, 33–42, doi: 10.52842/conf.acadia.2013.02.
  • [44] Bedon C., Honfi D., Machalická K.V. et al., Structural characterisation of adaptive façades in Europe – Part II: Validity of conventional experimental testing methods and key issues, “Journal of Building Engineering” 2019, Vol. 25, 100797, doi: 10.1016/j.jobe.2019.100797.
  • [45] Holstov A., Farmer G., Bridgens B., Sustainable materialisation of responsive architecture, “Sustainability” 2017, 9(3), 435, doi: 10.3390/su9030435.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1c1b7a3-fa6d-46f2-8f1e-a29baa06c129
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.