PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of molybdenum addition on W-Ni-Fe based heavy alloys sintered with spark plasma sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tungsten heavy alloys comprising tungsten, nickel and ferrous were modified, where molybdenum was added in varying weight proportions keeping the ratio of Ni: Fe (8:2) constant. The powders were mixed in a high-energy ball mill and were further fabricated using the spark plasma sintering (SPS) method at a peak temperature of 1000°C with heating rate of 100°C/min. The details of the microstructure and mechanical properties of these various alloy compositions were studied. With the increasing weight composition of the Mo in the alloy, the relative density of the alloy increased with a significant improvement in all the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and hardness improved significantly with increase in the proportion of Mo; however, a reduction in elongation percentage was observed. The maximum strength of 1250 MPa UTS was observed in the alloy with a Mo proportion of 24%. The heavy alloy unmixed with Mo has shown distinct white and grey regions, where white (W) grain is due to tungsten and grey region is a combinatorial effect of Ni and Fe. Upon addition of Mo, the white and gray phase differences started to minimize resulting in deep gray and black ‘C’-phase structures because of homogenization of the alloy. The main fracture mode found during this investigation in the alloys was inter-granular mode.
Rocznik
Strony
167--172
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Vellore Institute of Technology, Vellore Campus, Tamil Nadu 632014, India
autor
  • Vellore Institute of Technology, Vellore Campus, Tamil Nadu 632014, India
Bibliografia
  • [1] C.L. Chen and C. L. Huang, “Milling media and alloying effects on synthesis and characteristics of mechanically alloyed ODS heavy tungsten alloys,” Int. J. Refract. Met. Hard Mater., 44, 19–26 (2014).
  • [2] Y. Jin, S. Cao, J. Zhu, et al., “Gradient structure induced by molybdenum in 90W–Ni–Fe heavy alloy,” Int. J. Refract. Met. Hard Mater., 43, 141–146 (2014).
  • [3] H.J. Ryu, S.H. Hong, and W. H. Baek, “Microstructure and mechanical properties of mechanically alloyed and solid state sintered tungsten heavy alloys,” Mater. Sci. Eng. A, 291, 91–96 (2000).
  • [4] S.G. Caldwell, “Heat Treatment of tungsten alloys, Int. Powder Metall., 39, No. 7, 43–51 (2003). 63
  • [5] S.J. Park, J.L. Johnson, Y. Wu, et al., “Analysis of the effect of solubility on the densification behavior of tungsten heavy alloys using the master sintering curve approach,” Int. J. Refract. Met. Hard Mater., 37, 52–59 (2013).
  • [6] L. Ding, D.P. Xiang, Y.Y. Li, et al., “Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering,” Int. J. Refract. Met. Hard Mater., 33, 65–69 (2012).
  • [7] H. Ibrahim, A. Aziz, and A. Rahmat, “Enhanced liquid-phase sintering of W–Cu composites by liquid infiltration,” Int. J. Refract. Met. Hard Mater., 43, 222–226 (2014).
  • [8] H. Liu, S. Cao, J. Zhu, et al., “Densification, microstructure and mechanical properties of 90W–4Ni–6Mn heavy alloy,” Int. J. Refract. Met. Hard Mater., 37, 121–126 (2013).
  • [9] J. Zhu, S. Cao, and H. Liu, “Fabrication of W-Ni-Fe alloys gradient structures”, Int. J. Refract. Met. Hard Mater., 36, 72–75 (2013).
  • [10] N.K. Caliskan, N. Durlu, and S. Bor, “Swaging of liquid phase sintered 90W–7Ni–3Fe tungsten heavy alloy,” Int. J. Refract. Met. Hard Mater., 36, 260–264 (2013).
  • [11] J.W. Noh, E.P. Kim, H.S. Song, et al., “Matrix penetration of W–W grain-baundaries and its effect on mechanical properties of 93W–5.6Ni–1.4Fe heavy alloys,” Metall. Trans. A, 24, No. 11, 2411–2416 (1993).
  • [12] J.J. Dunkley, Powder Metallurgy, Metal Handbook, ASM International Publ., 7, No. 9, 111–112 (1998).
  • [13] A. Upadhyaya, “Processing strategy for consolidation tungsten heavy alloys for ordnance applications,” Mater. Chem. Phys., 67, 101–110 (2001).
  • [14] S.H. Hong and H.D. Ryu, “Combination of mechanical alloying and two-stage sintering of 93W–5.6Ni– 1.4Fe tungsten heavy alloy,” Mater. Sci. Eng. A, 344, 253–260 (2003).
  • [15] J. Liu and R.M. German, “Rearrangement densification in liquid-phase sintering,” Metall. Mater. Trans. A, 32, 3125–3131 (2001).
  • [16] A. Mondal, A. Upadhyaya, and D. Agrawal, “Effect of heating mode and sintering temperature on the consalidation of 90W–7Ni–3Fe alloys,” J. Alloy Compd., 509, 301–310 (2011).
  • [17] Y. Sahin, J. Powder Technol. (2014) 764306.
  • [18] R. Cury, F. Issartel, J.M. Joubert, and H. Couque, Powder Metall. 56 (2013) 347.
  • [19] Penrice TW, Bost J. U.S. Patents. 1988; Patent no. 4762 559.
  • [20] Stuitje P, Harkema, Taal C, U.S. Patents 1995; Patent No. 5,462,576.
  • [21] A. Bose and R.M. German, Metall. Trans. A. 19A (1988) 3100.
  • [22] T. Xinglong, L. Bangyi, et al., Trans. Nonferrous Metals Soc. China 14 (4) (2004) 747.
  • [23] L. Wensheng, M.A. Yunzhu, and H. Baiyun, Bull. Mater. Sci. 31 (1) (2008) 1–6.
  • [24] D.V. Edmonds and P.N. Jones, Metall. Trans. A. 10A (1979) 289.
  • [25] G. Nicolas, US Patents. 1990; Patent no. US4938799 A.
  • [26] A. Kumari, M. Sankaranarayana, and T.K. Nandy, On structure property correlation in high strength tungsten heavy alloys, International Journal of Refractory Metals & Hard Materials 67 (2017) 18–31.
  • [27] A. Mondal, D. Agrawal, and A. Upadhyaya, Microwave Sintering of Refractory Metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe Alloys, Journal of Microwave Power and Electromagnetic Energy, 44 (1), 2010, pp. 28‒44.
  • [28] W. Liu, Y. Ma, and Q. Cai, “Consolidation of MA W-Ni-Fe Alloyed Powder by Microwave-Assisted Sintering,” Materials Sciences and Applications, Vol. 2 No. 6, 2011, pp. 609‒614.
Uwagi
EN
Manuscript submitted 2017-12-06, revised 2018-04-06, 2018-05-02, 2018-05-14 and 2018-05-19, initially accepted for publication 2018-05-24, published in April 2019.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1b87f30-9b75-4615-9cfe-8e6dcbfab212
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.