PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D printing and testing of rose thorns or limpet teeth inspired anchor device for tendon tissue repair

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purposes: Advancements in medical technology have enabled medical specialists to resolve significant problems concerning tendon injuries. However, despite the latest improvements, surgical tendon repair remains challenging. This study aimed to explore the capabilities of the current state-of-the-art technologies for implantable devices. Methods: After performing extensive patent landscaping and literature review, an anchored tissue fixation device was deemed the most suitable candidate. This design was firstly investigated numerically, realizing a Finite Element Model of the device anchored to two swine tendons stumps, to simulate its application on a severed tendon. Two different hook designs, both bio-inspired, were tested while retaining the same device geometry and anchoring strategy. Then, the applicability of a 3D-printed prototype was tested on swine tendons. Finally, the device-tendon stumps ensemble was subjected to uniaxial tensile tests. Results: The results show that the investigated device enables a better load distribution during the immobilized limb period in comparison to standard suture-based approaches, yet it still presents several design flaws. Conclusions: The current implantable solutions do not ensure an optimal result in terms of strength recovery. This and other weak points of the currently available proposals will serve as a starting point for future works on bio-inspired implantable devices for tendon repair.
Rocznik
Strony
63--74
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Laboratory of Bio-Inspired Nanomechanics, Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Turin, Italy
autor
  • Laboratory of Bio-Inspired Nanomechanics, Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Turin, Italy
autor
  • Laboratory of Bio-Inspired Nanomechanics, Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Turin, Italy
  • Department of Hand, Plastic and Reconstructive Surgery, Ivrea Hospital, Ivrea, Italy
  • Laboratory of Bio-Inspired Nanomechanics, Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Turin, Italy
  • Laboratory of Bio-inspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
  • School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
  • Laboratory of Bio-Inspired Nanomechanics, Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Turin, Italy
Bibliografia
  • [1] AURAS R., LIM L.-T., SELKE S.E.M., HIDETO T., Poly(Lactic Acid) (Synthesis, Structures, Properties, Processing, and Applications), Mechanical Properties, 141–153, DOI: 10.1002/ 9780470649848.ch11.
  • [2] BARBER A.H., LU D., PUGNO N.M., Extreme strength observed in limpet teeth, J. R. Soc. Interface, 2015, 12 (105), 0–5, DOI: 10.1098/rsif.2014.1326.
  • [3] BUREAU I., WO 2007/066339 Al Drug-delivering composite structures, 2007.
  • [4] CAO Y., XIE R.G., TANG J.B., Dorsal-enhanced sutures improve tension resistance of tendon repair, J. Hand Surg Br., 2002, 27 (2), 161–164, DOI: 10.1054/jhsb.2001.0687.
  • [5] CHILSON L. (2013), The Difference Between ABS and PLA for 3D Printing, Available at: http://www.protoparadigm.com/ newsupdates/thedifferencebetweenabsandplafor3dprinting/ (Accessed: July 2019).
  • [6] CLAYTON R.A., COURT-BROWN C.M., The epidemiology of musculoskeletal tendinous and ligamentous injuries, Injury, 2008, 39 (12), 1338–1344, DOI: 10.1016/ j.injury.2008.06.021.
  • [7] CLEMENTE A., BERGAMIN F., SURACE C., LEPORE E., PUGNO N., Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model, J. Orthop. Traumatol., 2015, 16 (3), 251–257, DOI: 10.1007/s10195-014-0333-8.
  • [8] DY C.J., HERNANDEZ-SORIA A., MA Y., ROBERTS T.R., DALUISKI A., Complications after flexor tendon repair: a systematic review and meta-analysis, J. Hand Surg. Am., 2012, 37 (3), 543–551, DOI: 10.1016/j.jhsa.2011.11.006.
  • [9] ESHRAGHI S., SUMAN DAS, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomaterialia, 2010, 6 (7), 2467–2476, DOI: 10.1016/ j.actbio.2010.02.002.
  • [10] FARAH S., ANDERSON D.G., LANGER R., Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review, Adv. Drug Deliv. Rev., 2016, 107, 367–392, DOI: 10.1016/j.addr.2016.06.012.
  • [11] FRANCESCHI F., PAPALIA R., PACIOTTI M., FRANCESCHETTI E., DI MARTINO A., MAFFULLI N., DENARO V., Obesity as a risk factor for tendinopathy: a systematic review, Int. J. Endocrinol., 2014, DOI: 10.1155/2014/670262.
  • [12] GENTILE P., CHIONO V., CARMAGNOLA I., HATTON P.V., An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering, J. Mol. Sci., 2011, 15 (3), 3640–3659, DOI: 10.3390/ijms15033640.
  • [13] GORDON R.P.L.L., TOLAR M., VENKATESWARA RAO K.T., RITCHIE R.O., RABINOWITS S., Flexor tendon repair using a stainless steel internal anchor, J. Hand Surg. Am., 1998, 23B (1), 37–40, DOI: 10.1016/s0266-7681(98)80215-5.
  • [14] HADDAD R.J., KESTER M.A., MCCLUSKEY G.M., BRUNET M.E., COOK S.D., Comparative mechanical analysis of a loopedsuture tendon repair, J. Hand Surg. Am., 1988, 13 (5), 709–713, DOI: 10.1016/s0363-5023(88)80130-8.
  • [15] HANADA M., TAKAHASHI M., MATSUYAMA Y., Open re-rupture of the Achilles tendon after surgical treatment, Clin. Pract., 2011, 1 (4), 299–301, DOI: 10.4081/cp.2011.e134.
  • [16] HIRPARA K.M., ABOUAZZA O., O’NEILL B., O’SULLIVAN M., A technique for porcine flexor tendon harvest, J. Musculoskelet. Res., 2006, 10 (4), 181–186, DOI: 10.1142/ S0218957706001856.
  • [17] IPPOLITO E., NATALI P., POSTACCHINI F., ACCINNI L., DE C.M., Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages, J. Bone Joint Surg. Am., 1980, 62 (4), 583–598.
  • [18] JAMSHIDIAN M., TEHRANY E.A., IMRAN M., JACQUOT M., DESOBRY S., Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies, Compr. Rev. Food Sci. Food Saf., 2010, 9 (5), 552–571, DOI: 10.1111/j.15414337.2010.00126.x.
  • [19] JILDEH T.R., OKOROHA K.R., MARSHALL N.E., ABDUL-HAK A., ZENI F., MOUTZOUROS V., Infection and Rerupture After Surgical Repair of Achilles Tendons, Orthop. J. Sport. Med., 2018, 6 (5), 1–5, DOI: 10.1177/ 2325967118774302.
  • [20] KRAUTHAMMER T., Accuracy of the finite element method near a curved boundary, Comput. Struct., 1979, 10 (6), 921–929, DOI: 10.1016/0045-7949(79)90061-0.
  • [21] LAWRENCE T.M., WOODRUFF M.J., ALADIN A., DAVIS T.R.C., An assessment of the tensile properties and technical difficulties of two- and four-strand flexor tendon repairs, J. Hand Surg. Am., 2005, 30 (3), 294–297, DOI: 10.1016/j.jhsb.2005.01.003.
  • [22] Letters P., O.T. Phase, S. Distributions, A.F. Office, Calcium phosphate polymer composite and method, 1968.
  • [23] MakeItFrom, Polyglycolic Acid (PGA, Polyglycolide). https:// www.makeitfrom.com/material-properties/Polyglycolic-AcidPGA-Polyglycolide (Accessed: 14 January 2021).
  • [24] MakeItFrom, Polylactic Acid (PLA, Polylactide). https:// www.makeitfrom.com/material-properties/Polylactic-AcidPLA- Polylactide (Accessed: 14 January 2021).
  • [25] MAO W.F., WU Y.F., ZHOU Y.L., TANG J.B., A study of the anatomy and repair strengths of porcine flexor and extensor tendons: Are they appropriate experimental models?”, J. Hand Surg. Eur., 2011, 36 (8), 663–669, DOI: 10.1177/ 1753193411414117.
  • [26] MatWeb, Overview of materials for Polylactic Acid (PLA) Biopolymer. http://www.matweb.com/-search/DataSheet.aspx? MatGUID=ab96a4c0655c4018a8785ac4031b9278 (Accessed: 14 January 2021).
  • [27] MatWeb, Polyglycolic Acid (PGA); http://www.matweb.com/ search/DataSheet.aspx?MatGUID-=217394aba5b3413b9fbc034c 45310996 (Accessed: 14 January 2021).
  • [28] MISHRA V., KUIPER J.H., KELLY C.P., Influence of core suture material and peripheral repair technique on the strength of Kessler flexor tendon repair, J. Hand Surg. Br., 2003, 28 (4), 357–362, DOI: 10.1016/s0266-7681(03)00080-9.
  • [29] NAYAK A.N., NGUYEN D.V., BRABENDER R.C., HIRO M.E., MILES J.J., SMITHSON I.R., SANTONI B.G., STONE J.D., HESS A.V., A Mechanical Evaluation of Zone II Flexor Tendon Repair Using a Knotless Barbed Suture Versus a Traditional Braided Suture, J Hand Surg Am. 2015, 40 (7), 1355–1362, DOI: 10.1016/j.jhsa.2015.04.009.
  • [30] Objet, Objet VeroWhitePlus FullCure® Vero 835, 2010.
  • [31] OCHEN Y., BEKS R.B., VAN HEIJL M., HIETBRINK F., LEENEN L.P.H., VAN DER VELDE D., HENG M., VAN DER MEIJDEN O., GROENWOLD R.H.H., HOUWERT R.M., Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis, BMJ, 2019, DOI: 10.1136/bmj.k5120.
  • [32] OLIVA F., RUGIERO C., GIAI VIA A., BALDASSARRI M., BERNARDI G., BIZ C., BOSSA M., BUDA R., BUONOCORE D., CHIANCA V., COLLINA A., DE CARLI A., DE LUNA V., DI LANNO I., DI LORENZO L., DI PIETTO F., DOSSENA M., FANTONI I., FARSETTI P., FINI M., FINOTTI P., FORTE A.M., FOTI C., FRIZZIERO A., GAJ E., GALEONE C., GAMBERINI J., GASPARINI M., INNOCENTI B., LUPARIELLO D., MAHMOUD A., MARSILIO E., MORETTI B., NATALI S., PADULO J., PELLICCIARI L., PERAZZO L., PICCIRILLI E., PICERNO P., RUGGIERI P., TARANTINO U., VADALÀ A., VERONESI F., VERRI M., VETRANO M., VULPIANI M.C., ZAPPIA M., MAFFULLI N., I.S.Mu.L.T Achilles tendon rupture guidelines, Muscles. Ligaments Tendons J., 2018, 3, 310–363.
  • [33] PODICHETTY J.T., MADIHALLY S.V., Modeling of porous scaffold deformation induced by medium perfusion, J. Biomed. Mater. Res. Appl. Biomater., 2014, 102 (4), 737–748, DOI: 10.1002/jbm.b.33054.
  • [34] PRIDGEN B.C., WOON C.Y., KIM M., THORFINN J., LINDSEY D., PHAM H., CHANG J., Flexor tendon tissue engineering: Acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility, Tissue Eng. – Part C Methods, 2011, 17 (8), 819–828, DOI: 10.1089/ten.tec.2010.0457.
  • [35] RAIA R.B.W. SU, QUITKIN F.J.H.M., PARISIEN M., STRAUCH R.J.M.P., Gross and Histological Analysis of Healing After Dog Flexor Tendon Repair With the Teno FixTM Device, J. Hand Surg. Am., 2006, 31 (5), 524–529, DOI: 10.1016/ j.jhsb.2006.01.006.
  • [36] RAWSON S., CARTMELL S., WONG J., CARTMELL S., Suture techniques for tendon repair a comparative review, Muscles. Ligaments Tendons J., 2013, 3, 220–228.
  • [37] RAWSON S.D., MARGETTS L., WONG J.K.F., CARTMELL S.H., Sutured tendon repair; a multi-scale finite element model, Biomech. Model. Mechanobiol., 2015, 14 (1), 123–133, DOI: 10.1007/s10237-014-0593-5.
  • [38] SCHUIND F., COONEY W.P., LINSCHEID R.L., AN K.N., CHAO E.Y.S., Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posteroanterior plane, J. Biomech., 1995, 28 (5), DOI: 10.1016/ 0021-9290(94)00093-J.
  • [39] SMITH A.M., EVANS D.M., Biomechanical assessment of a new type of flexor tendon repair, J. Hand Surg. Am., 2001, 26 (3), 217–219, DOI: 10.1054/jhsb.2000.0542.
  • [40] STRATASYS© INC., Polyjet vero white plus, 2013.
  • [41] STRICKLAND J.W., The scientific basis for advances in flexor tendon surgery, J. Hand Ther., 2005, 18 (2), 94–110, DOI: 10.1197/j.jht.2005.02.013.
  • [42] TANG J.B., Outcomes and evaluation of flexor tendon repair, Hand Clin. 2013, 29 (2), 251–259, DOI: 10.1016/ j.hcl.2013.02.007.
  • [43] US C, MORRISS A., PIPER J.H., GRAY D.L.A.R., US C, Patent Application Publication Pub. No.: US 2005/0119694 A1, 2005.
  • [44] WADA A., KUBOTA H., MIYANISHI K., HATANAKA H., MIURA H., IWAMOTO Y., Comparison of postoperative early active mobilization and immobilization in vivo utilising a four--strand flexor tendon repair, J. Hand Surg. Am., 2001, 26B (4), 301–306; https://doi.org/10.1054/jhsb.2000.0547
  • [45] WIIG M., OLMARKER K., HÅKANSSON J., EKSTRÖM L., NILSSON E., MAHLAPUU M., A lactoferrin-derived peptide (PXL01) for the reduction of adhesion formation in flexor tendon surgery: An experimental study in rabbits, J. Hand Surg. Eur. 2011, 36 (8), 656–662, DOI: 10.1177/ 1753193411410823.
  • [46] WU T.T., WU P.T., LEE S.Y., WU K.C., SHAO C.J., CHERN T.C., SU F.C., JOU I.M., Effect of metacarpophalangeal joint position on A1 pulley and flexor digitorum tendons in trigger digit, J. Chin. Med. Assoc., 2019, 82 (10), 778–781, DOI: 10.1097/ JCMA.0000000000000165.
  • [47] YUNBING W., Implantable medical devices fabricated from block copolymers, 2015, EP2203197B1.
  • [48] ZATITI S.C., MAZZER N., BARBIERI C.H., UNIT H.S., VOLUME E., Mechanical Strengths of Tendon Sutures, J. Hand Surg. Am., 1998, 23B (2), 228–233, DOI: 10.1016/s0266-7681(98)80181-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1ad9b21-c2d8-4318-a408-7f6e512da5a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.