PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Study on the Melting Temperature, Microstructural and Improved Mechanical Properties of Sn58Bi/Cu Solder Alloy Reinforced with 1%, 2% and 3% Zirconia (ZrO2) Nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the influence of 1%, 2% and 3% zirconia (ZrO2) nanoparticles to the melting, microstructural and mechanical properties of the Sn58Bi solder. Melting temperatures of 145.11°C, 140.89°C and 143.84°C were attained correspondingly for the 1%, 2% and 3% ZrO2 reinforced Sn58Bi solder. The microstructures especially the spacing between the lamellar structures of the Sn58Bi solder alloy was narrower for 1% ZrO2 added with Sn58Bi solder alloy. The highest and lowest hardness value of 32.28 HV and 27.62 HV was recorded for 1% and 2% ZrO2 additions respectively. Highest shear strength value was noted for the 3% ZrO2 added SnBi/Copper joint with 0.8712 kN, while the lowest value of 0.4380 kN noted for the 1% ZrO2 added SnBi/Copper joint. The presence of small-sized ZrO2 nanoparticles can be seen to be properly dispersed at the solder joint to increase the shear load at maximum joint stress.
Twórcy
autor
  • Universiti Tunku Abdul Rahman, Lee Kong Chian Faculty of Engineering and Science, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
  • Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Tamansains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
autor
  • Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Tamansains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
autor
  • Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Tamansains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
Bibliografia
  • [1] L. Zhang, K.N. Tu, Mater. Sci. Eng. R. 82, 1-32, (2014).
  • [2] F. Gnecco, E. Ricci, S. Amore, G. Borzone, R. Novakovic, Int. J. Adhes. Adhes. 27 (5), 409-416 (2007).
  • [3] A. K. Gain, L Zhang, J. Mater. Sci.: Mater. Electron. 27 (11), 11273-11283 (2016).
  • [4] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao, J. Alloys Compd. 478, 121-127 (2009).
  • [5] A. K. Gain, L. Zhang, J. Mater. Sci.: Mater. Electron. 27 (7), 7524-7533 (2016).
  • [6] L. C. Tsao, S. Y. Chang, Mater. Des. 31, 990-993 (2010).
  • [7] J. Shen, Y. C. Chan, Microelectron Reliab. 49, 223-234 (2009).
  • [8] S. Cheng, C.-M. Huang, M. Pecht, Microelectron Reliab. 75, 77-95 (2017).
  • [9] H. R. Kotadia, P. D. Howes, S. H. Mannan, Microelectron Reliab. 54, 1253-1273 (2014).
  • [10] M. D. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95-141 (2000).
  • [11] M. N. Ervina Efzan, A. Singh, Solder Surf. Mt. Tech. 26 (3), 147-161 (2014).
  • [12] M. A. A. Mohd Salleh, S. D. McDonald, K. Nogita, J. Mater. Process. 24, 235-245 (2017).
  • [13] S. Chellvarajoo, M. Z. Abdullah, Microelectron Reliab. 84, 230-237 (2018).
  • [14] J. Wu, S. Xue, J. Wang, M. Wu, J. Wang, J. Mater. Sci. Mater. 29, 7372-7387 (2018).
  • [15] P. Yao, X. Li, X. Han, L. Xu, Solder Surf. Mt. Tech. 31 (1), 6-19 (2019).
  • [16] A. Yakymovych, Yu. Plevachuk, P. S. Vec Sr, P.S. Vec, D. Janickovic, P. S. Ebo, N. Beronska, A. Roshanghias, H. Ipser, J. Electron. Mater. 45 (12), 6143-6149 (2016).
  • [17] A. Singh, R. Durairaj, Effect on the Wettability, Hardness and Shear Strength Properties of 3%-nano Titanium Oxide (TiO2) Added Sn-3.8Ag-0.7Cu (SAC)/Copper (Cu) Solder Joint, Matec Web of Conferences. 237 (02013), (2018).
  • [18] W.-Q. Xing, X. Yu, H. Li, L. Ma, W. Zuo, P. Dong, J. Alloys Compd. 695, 574-582 (2017).
  • [19] Y. Tang, G. Li, Y. Pan, Mater. Des. 55, 574-582 (2014).
  • [20] Y. Tang, S. M. Luo, W. F. Huang, Y. C. Pan, G. Y. Li, J. Alloys Compd. 719, 365-375 (2017).
  • [21] F. Khodabakhshi, R. Sayyadi, N. S. Javid, Mater. Sci. Eng. 702, 371-385 (2017).
  • [22] Y. Ma, X. Li, L. Yang, W. Zhou, M. Wang, W. Zhu, P. Wu, Mater. Sci. Eng, 696, 437-444 (2017).
  • [23] Y. Li, Y. C. Chan, J. Alloys Compd. 645, 566-576, (2015).
  • [24] L. Yang, L. Zhu, Y. Zhang, S. Zhou, Z. Wang, S. Shen, X. Shi, Mater. Charact. 148, 280-291 (2019).
  • [25] S. Zhou, O. Mokhtari, M. G. Rafique, C. V. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Alloys Compd. 765, 1243-1252 (2018).
  • [26] Y.-L. Tsai, W.-S. Hwang, Mater. Sci. Eng. A. 413-414, 312-316 (2005).
  • [27] F. Xing, X.-M. Qiou, Y.-D. Li, Trans. Nonferrous Met. Soc. China. 25, 879-884 (2015).
  • [28] D.-H. Jung, A. Sharma, J.-P. Jung, J. Alloys Compd. 743, 300-313 (2018).
  • [29] S. Chellvarajoo, M. Z. Abdullah, C. Y. Khor, Mater. Des. 82, 206-215 (2015).
  • [30] S. Amares, M. N. Ervina Efzan, R. Durairaj, A. Niakan. Influence of Nano-3%Al2O3 On The Properties of Low Temperature Sn-58Bi (SB) Lead-Free Solder Alloy, IOP Conf. Ser.: Mater. Sci. Eng. 205 (012002), (2017).
  • [31] Z. L. Li, G. Y. Li, B. Li, L. X. Cheng, J. H. Huang, Y. Tang, J. Alloys Compd. 685, 983-991 (2013).
  • [32] Z. Moser, W. Gasior, J. Pstrus, J. Electron. Mater. 30, 1104-1111 (2011).
  • [33] S. Chellvarajoo, M. Z. Abdullah, Z.Samsudin, Mater. Des. 67, 197-208 (2015).
  • [34] K. Kanlayasiri, N. Meesathien, Adv. Mat. Sci. Eng. 33, 1-10 (2018).
  • [35] Z. Fathiana, A. Malekib, B. Niroumand. Ceram. Int. 43, 5302-5310 (2017).
  • [36] M. Ding, W. Xing, X. Yu, L. Ma, W. Zuo, Z. Ji, J. Alloys Compd. 739, 481-488 (2018).
  • [37] A. K. Gain, L. Zhang, Acta Mater. 5, 100234 (2019).
  • [38] S. Shang, Y. Wang, Y. Wang, H. Ma, A. Kunwar, Microelectron. Eng. 208, 47-53 (2019).
  • [39] G. Chen, H. Peng, V. V. Silberschmidtet, Y. C. Chan, C. Liu, F. Wu, J. Alloys Compd. 685, 680-689 (2016).
  • [40] Y. Lu, L. Ma, S.-Y. Li, W. Zuo, Z.-Q. Ji, M. Ding, J. Alloys Compd. 765, 128-139 (2018).
  • [41] A. Haseeb, M. M. Arafat, M. Rafie Johan, Mater. Charact. 64, 27-35 (2012).
  • [42] A. E. Hammad, Mater. Des. 50, 108-116 (2013).
  • [43] B. X. Voung, N. S. H. Vu, T. D. Manh, M. Vaka, D. X. Du, N. D. Nam, Mater. Lett. 208, 309-313 (2018)
  • [44] Z. H. Li, Y. Tang, Q. W. Guo, G. Y. Li, J. Alloys Compd. 789, 150-162 (2019).
  • [45] X. Hu, Y. Yang, S. Xu, Z. Chen, Mater. Sci. Eng. 600, 67-75 (2014).
  • [46] Y. Zuo, J. Shen, J. Xie, Xiang Lu, J. Mater. 257, 250-256 (2018).
  • [47] L. Yang, W. Zhou, Y. Ma, X. Li, Y. Li, W. Cui, P. Wu, Mater. Sci. Eng. 667, 368-375 (2016).
  • [48] O. Mokhtari, H. Nishikawa. Mater. Sci. Eng. 651, 831-839 (2016).
  • [49] A. K. Gain, Y. C. Chan, K. C. Yung, Microelectron Reliab. 51, 2306-2313 (2011).
  • [50] T. T. Dele-Afolabi, M. A. Azmah Hanim, M. Norkhairunnisa, H.M. Yusoff, M. T. Suraya, J. Alloys Compd. 649, 368-374 (2015)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1acce1e-8363-4cac-9bef-90a901a4ea71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.