Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the influence of 1%, 2% and 3% zirconia (ZrO2) nanoparticles to the melting, microstructural and mechanical properties of the Sn58Bi solder. Melting temperatures of 145.11°C, 140.89°C and 143.84°C were attained correspondingly for the 1%, 2% and 3% ZrO2 reinforced Sn58Bi solder. The microstructures especially the spacing between the lamellar structures of the Sn58Bi solder alloy was narrower for 1% ZrO2 added with Sn58Bi solder alloy. The highest and lowest hardness value of 32.28 HV and 27.62 HV was recorded for 1% and 2% ZrO2 additions respectively. Highest shear strength value was noted for the 3% ZrO2 added SnBi/Copper joint with 0.8712 kN, while the lowest value of 0.4380 kN noted for the 1% ZrO2 added SnBi/Copper joint. The presence of small-sized ZrO2 nanoparticles can be seen to be properly dispersed at the solder joint to increase the shear load at maximum joint stress.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
407--418
Opis fizyczny
Bibliogr. 50 poz., fot., rys., tab.
Twórcy
autor
- Universiti Tunku Abdul Rahman, Lee Kong Chian Faculty of Engineering and Science, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
- Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Tamansains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
autor
- Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Tamansains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
autor
- Center of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, SEGi University No. 9, Jalan Teknologi, Tamansains Selangor, Kota Damansara PJU 5, 47810 Petaling Jaya, Selangor, Malaysia
Bibliografia
- [1] L. Zhang, K.N. Tu, Mater. Sci. Eng. R. 82, 1-32, (2014).
- [2] F. Gnecco, E. Ricci, S. Amore, G. Borzone, R. Novakovic, Int. J. Adhes. Adhes. 27 (5), 409-416 (2007).
- [3] A. K. Gain, L Zhang, J. Mater. Sci.: Mater. Electron. 27 (11), 11273-11283 (2016).
- [4] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao, J. Alloys Compd. 478, 121-127 (2009).
- [5] A. K. Gain, L. Zhang, J. Mater. Sci.: Mater. Electron. 27 (7), 7524-7533 (2016).
- [6] L. C. Tsao, S. Y. Chang, Mater. Des. 31, 990-993 (2010).
- [7] J. Shen, Y. C. Chan, Microelectron Reliab. 49, 223-234 (2009).
- [8] S. Cheng, C.-M. Huang, M. Pecht, Microelectron Reliab. 75, 77-95 (2017).
- [9] H. R. Kotadia, P. D. Howes, S. H. Mannan, Microelectron Reliab. 54, 1253-1273 (2014).
- [10] M. D. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95-141 (2000).
- [11] M. N. Ervina Efzan, A. Singh, Solder Surf. Mt. Tech. 26 (3), 147-161 (2014).
- [12] M. A. A. Mohd Salleh, S. D. McDonald, K. Nogita, J. Mater. Process. 24, 235-245 (2017).
- [13] S. Chellvarajoo, M. Z. Abdullah, Microelectron Reliab. 84, 230-237 (2018).
- [14] J. Wu, S. Xue, J. Wang, M. Wu, J. Wang, J. Mater. Sci. Mater. 29, 7372-7387 (2018).
- [15] P. Yao, X. Li, X. Han, L. Xu, Solder Surf. Mt. Tech. 31 (1), 6-19 (2019).
- [16] A. Yakymovych, Yu. Plevachuk, P. S. Vec Sr, P.S. Vec, D. Janickovic, P. S. Ebo, N. Beronska, A. Roshanghias, H. Ipser, J. Electron. Mater. 45 (12), 6143-6149 (2016).
- [17] A. Singh, R. Durairaj, Effect on the Wettability, Hardness and Shear Strength Properties of 3%-nano Titanium Oxide (TiO2) Added Sn-3.8Ag-0.7Cu (SAC)/Copper (Cu) Solder Joint, Matec Web of Conferences. 237 (02013), (2018).
- [18] W.-Q. Xing, X. Yu, H. Li, L. Ma, W. Zuo, P. Dong, J. Alloys Compd. 695, 574-582 (2017).
- [19] Y. Tang, G. Li, Y. Pan, Mater. Des. 55, 574-582 (2014).
- [20] Y. Tang, S. M. Luo, W. F. Huang, Y. C. Pan, G. Y. Li, J. Alloys Compd. 719, 365-375 (2017).
- [21] F. Khodabakhshi, R. Sayyadi, N. S. Javid, Mater. Sci. Eng. 702, 371-385 (2017).
- [22] Y. Ma, X. Li, L. Yang, W. Zhou, M. Wang, W. Zhu, P. Wu, Mater. Sci. Eng, 696, 437-444 (2017).
- [23] Y. Li, Y. C. Chan, J. Alloys Compd. 645, 566-576, (2015).
- [24] L. Yang, L. Zhu, Y. Zhang, S. Zhou, Z. Wang, S. Shen, X. Shi, Mater. Charact. 148, 280-291 (2019).
- [25] S. Zhou, O. Mokhtari, M. G. Rafique, C. V. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Alloys Compd. 765, 1243-1252 (2018).
- [26] Y.-L. Tsai, W.-S. Hwang, Mater. Sci. Eng. A. 413-414, 312-316 (2005).
- [27] F. Xing, X.-M. Qiou, Y.-D. Li, Trans. Nonferrous Met. Soc. China. 25, 879-884 (2015).
- [28] D.-H. Jung, A. Sharma, J.-P. Jung, J. Alloys Compd. 743, 300-313 (2018).
- [29] S. Chellvarajoo, M. Z. Abdullah, C. Y. Khor, Mater. Des. 82, 206-215 (2015).
- [30] S. Amares, M. N. Ervina Efzan, R. Durairaj, A. Niakan. Influence of Nano-3%Al2O3 On The Properties of Low Temperature Sn-58Bi (SB) Lead-Free Solder Alloy, IOP Conf. Ser.: Mater. Sci. Eng. 205 (012002), (2017).
- [31] Z. L. Li, G. Y. Li, B. Li, L. X. Cheng, J. H. Huang, Y. Tang, J. Alloys Compd. 685, 983-991 (2013).
- [32] Z. Moser, W. Gasior, J. Pstrus, J. Electron. Mater. 30, 1104-1111 (2011).
- [33] S. Chellvarajoo, M. Z. Abdullah, Z.Samsudin, Mater. Des. 67, 197-208 (2015).
- [34] K. Kanlayasiri, N. Meesathien, Adv. Mat. Sci. Eng. 33, 1-10 (2018).
- [35] Z. Fathiana, A. Malekib, B. Niroumand. Ceram. Int. 43, 5302-5310 (2017).
- [36] M. Ding, W. Xing, X. Yu, L. Ma, W. Zuo, Z. Ji, J. Alloys Compd. 739, 481-488 (2018).
- [37] A. K. Gain, L. Zhang, Acta Mater. 5, 100234 (2019).
- [38] S. Shang, Y. Wang, Y. Wang, H. Ma, A. Kunwar, Microelectron. Eng. 208, 47-53 (2019).
- [39] G. Chen, H. Peng, V. V. Silberschmidtet, Y. C. Chan, C. Liu, F. Wu, J. Alloys Compd. 685, 680-689 (2016).
- [40] Y. Lu, L. Ma, S.-Y. Li, W. Zuo, Z.-Q. Ji, M. Ding, J. Alloys Compd. 765, 128-139 (2018).
- [41] A. Haseeb, M. M. Arafat, M. Rafie Johan, Mater. Charact. 64, 27-35 (2012).
- [42] A. E. Hammad, Mater. Des. 50, 108-116 (2013).
- [43] B. X. Voung, N. S. H. Vu, T. D. Manh, M. Vaka, D. X. Du, N. D. Nam, Mater. Lett. 208, 309-313 (2018)
- [44] Z. H. Li, Y. Tang, Q. W. Guo, G. Y. Li, J. Alloys Compd. 789, 150-162 (2019).
- [45] X. Hu, Y. Yang, S. Xu, Z. Chen, Mater. Sci. Eng. 600, 67-75 (2014).
- [46] Y. Zuo, J. Shen, J. Xie, Xiang Lu, J. Mater. 257, 250-256 (2018).
- [47] L. Yang, W. Zhou, Y. Ma, X. Li, Y. Li, W. Cui, P. Wu, Mater. Sci. Eng. 667, 368-375 (2016).
- [48] O. Mokhtari, H. Nishikawa. Mater. Sci. Eng. 651, 831-839 (2016).
- [49] A. K. Gain, Y. C. Chan, K. C. Yung, Microelectron Reliab. 51, 2306-2313 (2011).
- [50] T. T. Dele-Afolabi, M. A. Azmah Hanim, M. Norkhairunnisa, H.M. Yusoff, M. T. Suraya, J. Alloys Compd. 649, 368-374 (2015)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1acce1e-8363-4cac-9bef-90a901a4ea71