PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the addition of chemically degraded poly(ethylene terephthalate) on the rheological properties of bitumen

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ dodatku poli(tereftalanu etylenu) poddanego chemicznej degradacji na właściwości reologiczne asfaltu
Języki publikacji
EN
Abstrakty
EN
The study explores the feasibility of incorporating poly(ethylene terephthalate) (PET) plastomer into processed asphalt through chemical degradation. The depolymerization process involved subjecting the PET plastomer to aminolysis reaction with ethylenediamine. Consequently, the resultant monomer exhibited reduced rigidity and increased machinability. Enhancing its degree of fragmentation facilitated improved homogenization with bitumen. The resulting blend of bitumen and degraded plastomer underwent evaluation for creep resistance in accordance with the Multiple Stress Creep Recovery (MSCR) methodology at a temperature of 64°C. Moreover, fundamental standard tests were conducted, including penetration, softening point, and Fraass breaking point. The incorporation of additional amino groups in the form of degraded PET into the bitumen reduced its susceptibility (Jnr3200 < 0.5 kPa-1) to the creep process and lowered the brittle temperature (approximately -3°C) in comparison to 50/70 neat bitumen. Furthermore, the proposed depolymerization technology for PET and its application to bitumen represents a viable approach for the utilization of PET plastomer.
PL
W pracy przedstawiono możliwość aplikacji plastomeru poli(tereftalan etylenu) PET do asfaltu przetworzonego poprzez zastosowanie chemicznej degradacji. Proces depolimeryzacji polegał na poddaniu plastomeru PET reakcji aminolizy z wykorzystaniem etylenodiaminy. W efekcie uzyskany monomer uzyskał mniejszą sztywność oraz był łatwy w obróbce mechanicznej. Zwiększenie jego stopnia rozdrobnienia umożliwiło lepszą homogenizację z asfaltem. Uzyskaną mieszaninę asfaltu i zdegradowanego plastomeru poddano ocenie odporności na proces pełzania zgodnie z metodyką MSCR w temperaturze 64°C. Ponadto wykonano podstawowe badania normowe takie jak: penetracja, temperatura mięknienia oraz temperatura Fraassa. Wprowadzenie dodatkowych grup aminowych w postaci zdegradowanego PET do asfaltu zmniejszyło jego podatność (Jnr3200 < 0,5 kPa-1) na proces pełzania oraz temperaturę łamliwości (około -3°C) w porównaniu do asfaltu 50/70. Ponadto zaproponowana technologia depolimeryzacji PET i jego implementacja do asfaltu jest sposobem, który można wykorzystać do utylizacji plastomeru PET.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
Bibliografia
  • [1] Christensen D.W. and Bonaquist R.: Use of Strength Tests for Evaluating the Rut Resistance of Asphalt Concrete, Journal of the Association of Asphalt Paving Technologists, 71, (2002), 697-711.
  • [2] Nizamuddin S., Boom Y.J., and Giustozzi F.: Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review, Polymers, 13 (19), (2021), Art. nr 19, doi: 10.3390/polym13193242.
  • [3] Pszczola M., Rys D., and Jaczewski M.: Field Evaluation of High Modulus Asphalt Concrete Resistance to Low-Temperature Cracking, Materials, 15 (1), (2022), 369, doi: 10.3390/ma15010369.
  • [4] Dong F. et al.: Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt, Construction and Building Materials, 62, (2014), 1-7, doi: 10.1016/j.conbuildmat.2014.03.018.
  • [5] Airey G.: Rheological properties of styrene butadiene styrene polymer modified road bitumens, Fuel, 82 (14), (2003), Art. nr 14, doi: 10.1016/S0016-2361(03)00146-7.
  • [6] Nizamuddin S., Boom Y.J., Giustozzi F.: Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review, Polymers, 13 (19), (2021), 3242, doi: 10.3390/polym13193242.
  • [7] Zhu J., Birgisson B., Kringos N.: Polymer modification of bitumen: Advances and challenges, European Polymer Journal, 54, (2014), 18-38, doi: 10.1016/j.eurpolymj.2014.02.005.
  • [8] Navarro F., García-Morales M.: The use of waste polymers to modify bitumen, Polymer Modified Bitumen, (2011), 98-135.
  • [9] Imanbayev Y. et al.: Modification of Bitumen with Recycled PET Plastics from Waste Materials, Polymers, 14 (21), (2022), 4719, doi: 10.3390/polym14214719.
  • [10] Majka T.M., Ostrowski K.A., Piechaczek M.: Research on the Development of a Way to Modify Asphalt Mixtures with PET Recyclates, Materials, 16 (18), (2023), 6258, doi: 10.3390/ma16186258.
  • [11] McNally T.: Introduction to polymer modified bitumen (PmB), Polymer Modified Bitumen, Elsevier, 2011, 1-21. doi: 10.1533/9780857093721.1.
  • [12] Polacco G., Filippi S., Merusi F., Stastna G.: A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility, Advances in Colloid and Interface Science, 224, (2015), 72-112, doi: 10.1016/j.cis.2015.07.010.
  • [13] Hamad K., Kaseem M., Deri F.: Recycling of waste from polymer materials: An overview of the recent works, Polymer Degradation and Stability, 98 (12), (2013), Art. nr 12, doi: 10.1016/j.polymdegradstab.2013.09.025.
  • [14] Khakimullin Y.N.: Properties of Bitumens Modified by Thermoplastic Elastomers, Mechanics of Composite Materials, 36 (5), (2000), 417-422, doi: 10.1023/A:1026659520096.
  • [15] Mazurek G., Buczyński P., Iwański M., Podsiadło M., Pypeć P., Kowalczyk A.: Effects of the Mixing Process on the Rheological Properties of Waste PET-Modified Bitumen, Materials, 16 (23), (2023), Art. nr 23, doi: 10.3390/ma16237271.
  • [16] Merkel D.R. et al.: Waste PET Chemical Processing to Terephthalic Amides and Their Effect on Asphalt Performance, ACS Sustainable Chem. Eng., 8 (14), (2020), 5615-5625, doi: 10.1021/acssuschemeng.0c00036.
  • [17] Usman I.U., Kunlin M.: Influence of Polyethylene Terephthalate (PET) utilization on the engineering properties of asphalt mixtures: A review, Construction and Building Materials, 411, (2024), 134439, doi: 10.1016/j.conbuildmat.2023.134439.
  • [18] Spychaj T., Fabrycy E., Spychaj S., Kacperski M.: Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate), Journal of Material Cycles and Waste Management, 3 (1), (2001), 24-31, doi: 10.1007/s10163-000-0036-5.
  • [19] Zalewska A. (red.): I Konferencja Naukowo-Techniczna „Innowacje w przemyśle chemicznym”: monografia, 2nd ed.. Warszawa: Polska Izba Przemysłu Chemicznego, 2018.
  • [20] EN 1426: Bitumen and bituminous binders - Determination of needle penetration. 2015.
  • [21] EN 1427: Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method. 2015.
  • [22] EN 12593: Bitumen and bituminous binders - determination of the Fraass breaking point. 2015.
  • [23] EN 13703: Bitumen and bituminous binders - Determination of deformation energy.
  • [24] ASTM D4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. 2015.
  • [25] Li R. et al.: Innovative application of waste polyethylene terephthalate (PET) derived additive as an antistripping agent for asphalt mixture: Experimental investigation and molecular dynamics simulation, Fuel, 300, (2021), 121015, doi: 10.1016/j.fuel.2021.121015.
  • [26] Ganesan V., Rastogi P.K., Gupta R., Meredith M.T., Minteer S.D.: Ion exchange voltammetry at branched polyethylenimine cross-linked with ethylene glycol diglycidyl ether and sensitive determination of ascorbic acid, Electrochimica Acta, 105, (2013), 31-39, doi: 10.1016/j.electacta.2013.04.178.
  • [27] Hoang C.N., Dang Y.H.: Aminolysis of poly(ethylene terephthalate) waste with ethylenediamine and characterization of α,ω-diamine products, Polymer Degradation and Stability, 98 (3), (2013), 697-708, doi: 10.1016/j.polymdegradstab.2012.12.026.
  • [28] EN 16659:2015: Bitumen and Bituminous Binders - Multiple Stress Creep and Recovery Test (MSCRT).
  • [29] Nielsen L.E., Landel R. F.: Mechanical properties of polymers and composites, 2nd ed., rev. Expanded. New York: M. Dekker, 1994.
  • [30] Marques S.P.C., Creus G.J.: Computational viscoelasticity. Heidelberg; New York: Springer, 2012.
  • [31] Veryst: MCalibration software from Veryst Engineering. 47 Kearney Road, Needham, MA, USA, 2020.
  • [32] Mazurek G.: Analysis of selected properties of asphalt concrete with synthetic wax, Bulletin of the Polish Academy of Sciences Technical Sciences, 66 (2), (2018), Art. nr 2, doi: 10.24425/122102.
  • [33] Bernier A., Zofka A., Yut I.: Laboratory evaluation of rutting susceptibility of polymer-modified asphalt mixtures containing recycled pavements, Construction and Building Materials, 31, (2012), 58-66, doi: 10.1016/j.conbuildmat.2011.12.094.
Uwagi
This research was funded in whole or in part by National Science Centre, Poland, Miniatura 7 2023/07/X/ST8/00879. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1a3addd-0c35-4ec5-9081-8f2198082a00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.