PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unsaturated soil properties of MICP treated granitic residual soil of Shantou region of China

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unsaturated soil properties such as soil–water characteristic curve (SWCC) and shear strength are required for seepage and stability flow analyses in various geo-engineering infrastructures. Microbial-induced calcite precipitation (MICP) has been recently adopted for enhancing strength of soils however, with rare focus on improvement in unsaturated soil properties of granitic residual soil. It is known that granite residual soil exhibits unique disintegration properties upon interaction with water. The objective of this study is to investigate the unsaturated properties under different vertical stresses (0, 100, 200 and 300 kPa) for MICP treated granitic residual soils. Further, microstructural characterization of MICP treated soil was conducted to analyse its water retention and shear strength, so as to provide theoretical basis for engineering application of MICP in strengthening granite residual soil. Pressure plate apparatus and FDJ-20 quadruple shear strength apparatus were utilized to obtain SWCCs and shear strength, respectively. Based on the result, it can be concluded that the treatment by MICP is found to enhance the air entry value of granitic residual soil. In addition, MICP treated soils possess higher water content than untreated soil at near-saturated condition. This is due to calcite precipitation on surface of grains and carbonate formation at contact points, which in turn reduces void ratio. However, the difference in water retention reduces with an increase in suction and also confining stress. It is possibly due to breakage of carbonate bonds at contact points at higher stresses. After five times grouting, the effective cohesion, internal friction angle and matric suction angle is found to increase very significantly.
Czasopismo
Rocznik
Strony
1885--1894
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou, China
  • Guangzhou Municipal Engineering Testing Co. Ltd, Guangzhou 510060, China
autor
  • Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou, China
autor
  • Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou, China
Bibliografia
  • 1. Almajed A, Tirkolaei HK, Kavazanjian E, Hamdan N (2019) Enzyme induced biocementated sand with high strength at low carbonate content. Sci Rep 9(1):1–7
  • 2. ASTM (2016) American Society for Testing and Materials – ASTM. ASTM D5298 -10: Standard test method for measurement of soil potential (suction) using filter paper. Annual Book of ASTM Standards, vol 15.09. Philadelphia
  • 3. Canakci H, Sidik W, Kilic IH (2015) Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found 55(5):1211–1221
  • 4. Cardoso R, Pires I, Duarte SO, Monteiro GA (2018) Effects of clay’s chemical interactions on biocementation. Appl Clay Sci 156:96–103
  • 5. Cardoso R, Pedreira R, Duarte S, Monteiro G, Borges H, & Flores-Colen I (2016) Biocementation as rehabilitation technique of porous materials. In New Approaches to Building Pathology and Durability (pp. 99–120). Springer, Singapore.
  • 6. Cheng YJ, Tang CS, Pan XH, Liu B, Xie YH, Cheng Q, Shi B (2021) Application of microbial induced carbonate precipitation for loess surface erosion control. Eng Geol 294:106387
  • 7. Chung H, Kim SH, Nam K (2021) Application of microbially induced calcite precipitation to prevent soil loss by rainfall: effect of particle size and organic matter content. J Soils Sediments 21(8):2744–2754
  • 8. Cui MJ, Zheng Chu J, Wu CC, Lai HJ (2021) Biomediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotech 16(5):1377–1389
  • 9. Dagliya M, Satyam N, Garg A (2022) Experimental study on optimization of cementation solution for wind-erosion resistance using the MICP method. Sustainability 14(3):1770
  • 10. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136
  • 11. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392
  • 12. Dilrukshi RAN, Nakashima K, Kawasaki S (2018) Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils Found 58(4):894–910
  • 13. Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc Microanal 13(1):42–50
  • 14. Feng K, Montoya BM (2016) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142(1):04015057
  • 15. Fredlund DG, Morgenstern NR, Widger RA (1978) The shear strength of unsaturated soils. Can Geotech J 15(3):313–321
  • 16. Fredlund DG, Rahardjo H, and Gan JKM (1987) Non-linearity of strength envelope for unsaturated soils. In Proceedings of the 6th international conference on expansive soils. New Delhi, India (Vol. 1, pp. 49–54)
  • 17. Garg A, Wani I, Zhu H, Kushvaha V (2022) Exploring efficiency of biochar in enhancing water retention in soils with varying grain size distributions using ANN technique. Acta Geotech 17(4):1315–1326
  • 18. Gebru KA, Kidanemariam TG, Gebretinsae HK (2021) Bio-cement production using microbially induced calcite precipitation (MICP) method: a review. Chem Eng Sci 238:116610
  • 19. Gowthaman S, Nakashima K, Kawasaki S (2021) Freeze thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation”. Soils Found 60(4):840–855
  • 20. Hataf N, Baharifard A (2020) Reducing soil permeability using microbial induced carbonate precipitation (MICP) method: a case study of shiraz landfill soil. Geomicrobiol J 37(2):147–158
  • 21. Jiang N, Soga K, Kuo M (2016) Microbially induced carbonate precipitation (MICP) for seepage-induced internal erosion control in sand-clay mixtures. Am Soc Civ Eng 143:04016100
  • 22. Jiang NJ, Tang CS, Yin LY, Xie YH, Shi B (2019) Applicability of microbial calcification method for sandy-slope surface erosion control. J Mater Civ Eng 31(11):04019250
  • 23. Kang B, Zha F, Deng W, Wang R, Sun X, Lu Z (2022) Biocementation of pyrite tailings using microbially induced calcite carbonate precipitation. Molecules 27(11):3608
  • 24. Lee ML, Ng WS, Tanaka Y (2013) Stress-deformation and compressibility responses of bio-mediated residual soils. Ecol Eng 60:142–149
  • 25. Liang S, Xiao X, Fang C, Feng D, Wang Y (2022) Experimental study on the mechanical properties and disintegration resistance of microbially solidified granite residual soil. Crystals 12(2):132
  • 26. Lin H (2016) Microbial modification of soil for ground improvement, Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania, U.S.A
  • 27. Lin P, Zhang J, Huang H, Huang Y, Wang Y, Garg A (2021) Strength of unsaturated granite residual soil of shantou coastal region considering effects of seepage using modified direct shear test. Indian Geotech J 51(4):719–731
  • 28. Liu B, Tang CS, Pan XH, Zhu C, Cheng YJ, Xu JJ, Shi B (2021) Potential drought mitigation through microbial induced calcite precipitation-MICP. Water Resour Res 57(9):e2020WR029434
  • 29. Liu X, Zhang X, Kong L, Wang G, and Lu J (2022) Disintegration of granite residual soils with varying degrees of weathering. Eng Geol. 106723.
  • 30. Marzin T, Desvages B, Creppy A, Lépine L, Esnault-Filet A, Auradou H (2020) Using microfluidic set-up to determine the adsorption rate of Sporosarcina pasteurii bacteria on sandstone. Transp Porous Media 132(2):283–97
  • 31. Montoya BM, DeJong JT (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019
  • 32. Mwandira W, Nakashima K, Kawasaki S (2017) Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol Eng 109:57–64
  • 33. Ng CW, Pang YW (2000) Experimental investigations of the soil-water characteristics of a volcanic soil. Can Geotech J 37(6):1252–1264
  • 34. Ortega-Villamagua E, Gudiño-Gomezjurado M, Palma-Cando A (2020) Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials. Molecules 25(23):5499
  • 35. Osinubi KJ, Eberemu AO, Ijimdiya TS, Yakubu SE, Gadzama EW, Sani JE, Yohanna P (2020) Review of the use of microorganisms in geotechnical engineering applications. SN Appl Sci 2(2):1–19
  • 36. Parajuli K, Sadeghi M, Jones SB (2017) A binary mixing model for characterizing stony-soil water retention. Agric for Meteorol 244:1–8
  • 37. Rahimi A, Rahardjo H, Leong EC (2015) Effects of soil–water characteristic curve and relative permeability equations on estimation of unsaturated permeability function. Soils Found 55(6):1400–1411
  • 38. Saffari R, Nikooee E, Habibagahi G, Van Genuchten MT (2019) Effects of biological stabilization on the water retention properties of unsaturated soils. J Geotech Geoenviron Eng 145(7):04019028
  • 39. Satyanaga A, Rahardjo H (2019) Unsaturated shear strength of soil with bimodal soil-water characteristic curve. Géotechnique 69(9):828–832
  • 40. Satyanaga A, Rahardjo H, Zhai Q (2017) Estimation of unimodal water characteristic curve for gap-graded soil. Soils Found 57(5):789–801
  • 41. Terzis D, Laloui L (2019) Cell-free soil bio-cementation with strength, dilatancy and fabric characterization. Acta Geotech 14(3):639–656
  • 42. Zhai Q, Rahardjo H, Satyanaga A (2017) Effects of residual suction and residual water content on the estimation of permeability function. Geoderma 303:165–177
  • 43. Zhai Q, Rahardjo H, Satyanaga A, Dai G (2019) Estimation of unsaturated shear strength from soil–water characteristic curve. Acta Geotech 14(6):1977–1990
  • 44. Zhai Q, Rahardjo H, Satyanaga A, Dai GL, Du YJ (2020) Effect of the uncertainty in soil-water characteristic curve on the estimated shear strength of unsaturated soil. J Zhejiang Univ-SCI A 21(4):317–330
  • 45. Zhang LL, Fredlund DG, Fredlund MD, Wilson GW (2014) Modeling the unsaturated soil zone in slope stability analysis. Can Geotech J 51(12):1384–1398
  • 46. Teng F, Ouedraogo C, Sie YC (2020) Strength improvement of a silty clay with microbiologically induced process and coir fiber. J Geoengin 15:79–88
  • 47. Xiao Y, Ma G, Wu H, Lu H, Zaman M (2022) Rainfall-induced erosion of biocemented graded slopes. Int J Geomech 22(1):04021256
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1a3a4ee-1970-4c5f-8bcb-98c155b507fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.