PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping forest fire risk: A comprehensive approach using analytical hierarchy process, geographic information system, and remote sensing integration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wildfire is one of the natural hazards that is escalating globally. While it can cause extensive harm worldwide, significant economic losses, infrastructural damage, and severe social disruption worldwide, the Mediterranean region is vulnerable because of its distinct climate and vegetation patterns. This study uses geospatial technologies and the multi-criteria decision-making method with Analytical Hierarchy Process to assess and map wildfire risk, using different factors like anthropogenic, meteorological and topographic data. The resulting fire risk map categorizes the area into five zones: very high, high, moderate, low, and very low risk. Findings indicate that 34.89% of the area is at moderate risk, 33.45% at high risk, and 7.62% at very high risk. The model’s final susceptibility map was found to be consistent with the historical fire events that occurred in the area of study, demonstrating the efficacy of the approach utilized to identify and map fire risk zones. This model will enhance disaster response capabilities and preparedness through coordination with stakeholders and development of sustainable forest management contingency plans for more resilient communities.
Słowa kluczowe
Twórcy
autor
  • Lebanese University, EDST, Lebanon, Beirut, Lebanon
autor
  • Lebanese University, Faculty of Technology, Saida, Lebanon
  • Lebanese University, Faculty of Technology, Saida, Lebanon
autor
  • Saint-Joseph University, Ecole Supérieure D’ingénieurs de Beyrouth, Beirut, Lebanon
Bibliografia
  • 1. Abdo, H. G., Almohamad, H., Al Dughairi, A. A., & Al-Mutiry, M. (2022). GIS-based frequency ratio and analytic hierarchy process for forest fire susceptibility mapping in the western region of Syria. Sustainability, 14(8), 4668. https://doi.org/10.3390/su14084668
  • 2. Abu Dabous, S., & Alkass, S. (2008). Decision support method for multi‐criteria selection of bridge rehabilitation strategy. Construction Management and Economics, 26(8), 883–893. https://doi.org/10.1080/01446190802213537
  • 3. Agarwal, C. (2002). A review and assessment of land-use change models: Dynamics of space, time, and human choice. [Publisher and DOI information not available].
  • 4. Aini, A., Curt, T., & Bekdouche, F. (2019). Modelling fire hazard in the southern Mediterranean fire rim (Bejaia region, northern Algeria). Environmental Monitoring and Assessment, 191(12), 747. https://doi.org/10.1007/s10661-019-7834-0
  • 5. Alexandrian, D., Esnault, F., & Calabri, G. (1999). Forest fires in the Mediterranean area. [Publisher or report details not available; DOI unavailable].
  • 6. Belhadj-Khedher, C., Koutsias, N., Karamitsou, A., EI-Melki, T., Ouelhazi, B., Hamdi, A.,... & Mouillot, F. (2018). A revised historical fire regime analysis in Tunisia (1985–2010) from a critical analysis of the national fire database and remote sensing. Forests, 9(2), 59. https://doi.org/10.3390/f9020059
  • 7. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141. https://doi.org/10.1287/ mnsc.17.4.B141
  • 8. Bugh, G. R., Kingston, P., Barnett, R. D., Khalaf, S. G., Maksoud, C. F., & Ochsenwald, W. L. (2024, August 26). Lebanon. Encyclopedia Britannica. Retrieved from https://www.britannica.com/place/Lebanon
  • 9. Bui, D. T., Van Le, H., & Hoang, N. D. (2018). GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecological Informatics, 48, 104–116. https://doi.org/10.1016/j.ecoinf.2018.08.007
  • 10. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision-making methods. In Fuzzy multiple attribute decision making: Methods and applications 289–486. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-46768-4_7
  • 11. CNRS-L. (2019). Land cover/land use map of Lebanon (Scale 1:20.000). Centre National de la Recherche Scientifique-Liban (CNRS-L).
  • 12. Convention on Biological Diversity. (n.d.). Country profile: Lebanon. Retrieved from https://www.cbd. int/countries/profile?country=lb
  • 13. Danumah, J. H., Odai, S. N., Saley, B. M., Szarzynski, J., Thiel, M., Kwaku, A.,... & Akpa, L. Y. (2016). Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques (Côte d’Ivoire). Geoenvironmental Disasters, 3(1), 1–13. https://doi.org/10.1186/s40677-016-0044-x
  • 14. Dimitrakopoulos, A. P., & Mitsopoulos, I. D. (2006). Global forest resources assessment 2005: Report on fires in the Mediterranean region. Fire Management Working Papers (FAO), 8.
  • 15. El Hafyani, M., Essahlaoui, A., Van Rompaey, A., Mohajane, M., El Hmaidi, A., El Ouali, A.,... & Serrhini, N. E. (2020). Assessing regional-scale water balances through remote sensing techniques: A case study of Boufakrane River Watershed, Meknes Region, Morocco. Water, 12(2), 320. https://doi.org/10.3390/w12020320
  • 16. Esri. (n.d.). How aspect works. Retrieved August 26, 2024, from https://pro.arcgis.com/en/pro-app/latest/ tool-reference/spatial-analyst/how-aspect-works.htm
  • 17. Faour, G. (2004). Forest fire fighting in Lebanon using remote sensing and GIS. Technical Report.
  • 18. Faour, G., Kheir, R. B., & Verdeil, É. (2006). Caractérisation sous système d’information géographique des incendies de forêts: l’exemple du Liban. Forêt Méditerranéenne, 27(4), 339–352.
  • 19. Faour, G. (2015). Evaluating urban expansion using remotely-sensed data in Lebanon. Lebanon Science Journal, 16, 23–32.
  • 20. Ghali, R., Jmal, M., Souidene Mseddi, W., & Attia, R. (2020). Recent advances in fire detection and monitoring systems: A review. In Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), Vol. 1 (pp. 332–340). Springer International Publishing. https://doi.org/10.1007/978-3-030-21012-6_36
  • Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. https://doi.org/10.1016/j. rse.2016.02.054
  • 22. Gill, A. M. (1975). Fire and the Australian flora: A review. Australian Forestry, 38(1), 4–25. https://doi.org/10.1080/00049158.1975.10675685
  • 23. Gill, A. M., Stephens, S. L., & Cary, G. J. (2013). The worldwide “wildfire” problem. Ecological Applications, 23(2), 438–454. https://doi.org/10.1890/10-2213.1
  • 24. Global Forest Watch. (2024). Lebanon fires dashboard. Retrieved July 30, 2024, from https:// www.globalforestwatch.org/dashboards/country/ LBN/?category=fires
  • 25. Hagos, Y. G., Andualem, T. G., Yibeltal, M., & Mengie, M. A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Applied Water Science, 12(7), 148. https://doi.org/10.1007/s13201-022-01665-3
  • 26. Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., & Flannigan, M. D. (2020). A review of machine learning applications in wildfire science and management. Environmental Reviews, 28(4), 478–505. https://doi.org/10.1139/er-2020-0019
  • 27. Key, C. H., & Benson, N. C. (1999). The Normalized Burn Ratio (NBR): A Landsat TM radiometric measure of burn severity. United States Geological Survey, Northern Rocky Mountain Science Center.
  • 28. Kumar, M., Denis, D. M., Singh, S. K., Szabó, S., & Suryavanshi, S. (2018). Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sensing Applications: Society and Environment, 10, 224–233. https://doi.org/10.1016/j.rsase.2018.02.002
  • 29. Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2010). Fire risk evaluation using multicriteria analysis— a case study. Environmental Monitoring and Assessment, 166, 223–239. https://doi.org/10.1007/ s10661-009-0997-6
  • 30. Lamat, R., Kumar, M., Kundu, A., & Lal, D. (2021). Forest fire risk mapping using analytical hierarchy process (AHP) and earth observation datasets: A case study in the mountainous terrain of Northeast India. SN Applied Sciences, 3(4), 425. https://doi.org/10.1007/s42452-021-04431-5
  • 31. Majdalani, G., Koutsias, N., Faour, G., Adjizian- Gerard, J., & Mouillot, F. (2022). Fire regime analysis in Lebanon (2001–2020): Combining remote sensing data in a scarcely documented area. Fire, 5(5), 141. https://doi.org/10.3390/fire5050141
  • 32. Majlingová, A. (2015). Automated procedure to assess the susceptibility of forest to fire. Journal of Forest Science, 61(6), 255–260. https://doi.org/10.17221/13/2015-JFS
  • 33. Masri, T., Khawlie, M., Faour, G., & Awad, M. (2003, June). Mapping forest fire prone areas in Lebanon. In Proceedings of the EARSeL 23rd Symposium of Remote Sensing in Transition – 4th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management (pp. 109–113).
  • 34. Mazzeo, G., De Santis, F., Falconieri, A., Filizzola, C., Lacava, T., Lanorte, A.,... & Satriano, V. (2022). Integrated satellite system for fire detection and prioritization. Remote Sensing, 14(2), 335. https://doi.org/10.3390/rs14020335
  • 35. Ministry of Environment, Lebanon. (2024). Vulnerability and adaptation. Retrieved July 30, 2024, from https://climatechange.moe.gov.lb/ vulnerability-and-adaptation
  • 36. Mittermeier, R. (2005). Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions.
  • 37. MoE-UNDP-UNICEF-UNHCR (United Nations High Commission for Refugees). (2020). Lebanon State of the Environment and Future Outlook: Turning the Crises into Opportunities.
  • 38. Mohajane, M., Costache, R., Karimi, F., Pham, Q. B., Essahlaoui, A., Nguyen, H.,... & Oudija, F. (2021). Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 129, 107869. https://doi.org/10.1016/j.ecolind.2021.107869
  • 39. NASA FIRMS. (n.d.). FIRMS: Fire Information for Resource Management System. NASA. Retrieved August 26, 2024, from https://firms.modaps.eosdis. nasa.gov/
  • 40. NASA. (n.d.). ASTER Global Digital Elevation Model (GDEM). NASA Earthdata. Retrieved from https://earthdata.nasa.gov
  • 41. Ogato, G. S., Bantider, A., Abebe, K., & Geneletti, D. (2020). Geographic information system (GIS)- based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West Shoa Zone, Oromia Regional State, Ethiopia. Journal of Hydrology: Regional Studies, 27, 100659. https://doi.org/10.1016/j.ejrh.2019.100659
  • 42. Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C.,... & Pausas, J. G. (2009). Fire‐related traits for plant species of the Mediterranean Basin: Ecological Archives E090‐094. Ecology, 90(5), 1420. https://doi.org/10.1890/08-1309.1
  • 43. Pinto, M. M., Trigo, R. M., Trigo, I. F., & DaCamara, C. C. (2021). A practical method for high-resolution
  • burned area monitoring using Sentinel-2 and VIIRS. Remote Sensing, 13(9), 1608. https://doi.org/10.3390/rs13091608
  • 44. Pourghasemi, H. R., Beheshtirad, M., & Pradhan, B. (2016). A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomatics, Natural Hazards and Risk, 7(2), 861– 885. https://doi.org/10.1080/19475705.2014.984247
  • 45. PreventionWeb. (2022, September 15). Lebanon’s forests: Dousing fire risks through stronger forest management. Retrieved July 30, 2024, from https://www. preventionweb.net/news/lebanons-forests-dousing-fire-risks-through-stronger-forest-management
  • 46. Raval, P., & Motiani, R. (2022, August). Review of fire risk factors for fire risk assessment in urban areas: The case of Ahmedabad, India. In International Conference on Innovation in Smart and Sustainable Infrastructure (pp. 607–623). Singapore: Springer Nature Singapore.
  • 47. Rothermel, R. C. (1983). How to predict the spread and intensity of forest and range fires (Vol. 143). U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.
  • 48. Rouse Jr, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. NASA-CR-132982).
  • 49. Ruffault, J., & Mouillot, F. (2015). How a new fire‐suppression policy can abruptly reshape the fire‐weather relationship. Ecosphere, 6(10), 1–19. https://doi.org/10.1890/ES15-00258.1
  • 50. Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N.,... & Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 13790. https://doi.org/10.1038/s41598-020-70779-3
  • 51. Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073–1076.
  • 52. Sharma, N. R., Fernandes, P. J. F., & Pokarel, J. R. (2014). Methodological development for forest fire hazard in Nepal. Revista Brasileira de Cartografia, 66(7), 1551–1566.
  • 53. Station. Mukherjee, S., & Raj, K. (2014). Analysis of forest fire of Meghalaya using geospatial tools. In 15th ESRI India User Conference 2014. Retrieved from https://www.esri.in/
  • 54. Szpakowski, D.M., & Jensen, J.L. (2019). A review of the applications of remote sensing in fire ecology. Remote Sensing, 11(22), 2638. https://doi.org/10.3390/rs11222638
  • 55. Teodoro, A. C., & Duarte, L. (2013). Forest fire risk maps: A GIS open source application—a case study in Norwest of Portugal. International Journal of Geographical Information Science, 27(4), 699–720. https://doi.org/10.1080/13658816.2012.707613
  • 56. Triantaphyllou, E., & Triantaphyllou, E. (2000). Multi-criteria decision making methods (pp. 5–21). Springer US.
  • 57. Venkatesh, K., Preethi, K., & Ramesh, H. (2020). Evaluating the effects of forest fire on water balance using fire susceptibility maps. Ecological Indicators, 110, 105856. https://doi.org/10.1016/j. ecolind.2019.105856
  • 58. Weatherbit. (n.d.). Weatherbit API documentation. Retrieved from https://www.weatherbit.io/api
  • 59. World Bank. (2022a). Climate Change Knowledge Portal: Lebanon. Retrieved from https://climateknowledgeportal.worldbank.org/country/lebanon/climate-data-historical
  • 60. World Bank. (2011). Gray matters: Enhancing the quality of education and training in developing countries. Washington, DC: World Bank.
  • 61. https://documents1.worldbank.org/curated/en/360011468265768992/pdf/622660ESW0Gray0c060601100BOX361480B.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f19ff57d-89cd-47dd-9414-98ba32df622b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.