PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of in-plane constraints on fatigue crack growth rate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The geometry of structural members can influence the fatigue crack growth rate. The influence can be taken into account by incorporating dimensions in the formulas. However, such an approach is ineffective as the dependence of the crack growth rate is hard to predict and the formulas depend on the shape of the element. For each shape, a new formula is required. It is, however, possible to use another approach that can be called a local approach in which parameters of the stress field in the neighbourhood of the crack tip can be utilized. It can be considered as the extension of Paris' approach to fatigue crack growth. In the paper, the T-stress depending on the element's geometry is used to quantify the effect of geometry on the fatigue crack growth rate. A series of fatigue tests on three-point bending specimens with different initial crack lengths were conducted. As a result, the dependence of the crack growth rate on the T-stress value was obtained.
Twórcy
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Aleja Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Aleja Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Aleja Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Williams, M.L. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1957; 24: 109–114.
  • 2. Anderson, T.L. Fracture Mechanics: Fundamentals and Applications. Boca Raton: CRC Press, 1994.
  • 3. ASTM E. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Measurement. West Conshohocken, PA: ASTM International, 1997; 399–90.
  • 4. Larsson S.G., Carlsson A.J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. Journal of Mechanics and Physics of Solids. 1973; 21: 263–277.
  • 5. Hutchinson, J.W. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids. 1968; 16: 13–31.
  • 6. Rice, J.R., Rosengren, G.F. Plane strain deformation near crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids. 1968; 16: 1–12.
  • 7. Yang, S., Chao Y., Sutton M. Higher order asymptotic crack tip fields in a power-law hardening material. Engineering Fracture Mechanics. 1993; 19(1): 1–20.
  • 8. O'Dowd, N., Shih, C. Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of fields. Journal of the Mechanics and Physics of Solids. 1991; 39(8): 989–1015.
  • 9. O'Dowd, N., Shih, C. Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture applications. Journal of the Mechanics and Physics of Solids. 1992; 40(5): 939–963.
  • 10. O'Dowd, P.N. Application of two parameter approaches in elastic–plastic fracture mechanics. Engineering Fracture Mechanics. 1995; 52(3): 445–465.
  • 11. O'Dowd, N., Shih C., Dodds, R.J. The Role of Geometry and Crack Growth on Constraint and Implications for Ductile/Brittle Fracture, in Constraint Effects in Fracture Theory and Applications: Second Volume. Philadelphia, 1995.
  • 12. Janus-Galkiewicz, U., Galkiewicz, J. Analysis of the failure process of elements subjected to monotonic and cyclic loading using the Wierzbicki–Bai Model. Materials. 2021; 14: 6265.
  • 13. Galkiewicz, J., Janus-Galkiewicz, U. The numerical analysis of the in-plane constraint influence on the behavior of the crack subjected to cyclic loading. Materials. 2021; 14(1764): 1–14.
  • 14. Paris, P., Gomez, M., Anderson, W. A rational analytic theory of fatigue. The Trend in Engineering. 1961; 13: 9–14.
  • 15. Simon, I., Banks-Sills, L., Fourman, V. Mode I delamination propagation and R-ratio effects in woven composite. International Journal of Fatigue. 2017; 96: 237–251.
  • 16. Zhu, J., Xu, L., Guo, W. The influence of bending loading on surface fatigue crack growth life. International Journal of Fatigue. 2023; 167: 107285.
  • 17. Bilir, O.G., Harun, M. Effect of stress ratio on the rate of growth of fatigue cracks in 1100 Al-alloy. Engineering Fracture Mechanics. 1990; 37(6): 1203–1206.
  • 18. Alqahtani, I., Starr, A., Khan, M. Investigation of the combined influence of temperature and humidity on fatigue crack growth rate in Al6082 alloy in a coastal environment. Materials. 2023; 16: 6833. https://doi.org/10.3390/ma16216833.
  • 19. Macek, W. Fracture surface formation of notched 2017A-T4 aluminium alloy under bending fatigue. International Journal of Fracture. 2022; 234: 141–157.
  • 20. Macek, W., Branco, R., da Silva, J.A. de Jesus, S.-P., Zhu, R., Masoudi Nejad, Gryguc, A. Strain energy density and entire fracture surface parameters relationship for LCF life prediction of additively manufactured 18Ni300 steel. International Journal of Damage Mechanics. 2024; 33(7): 725–747.
  • 21. Free, B., Marino, G., Schindelholz, E., Dorman S.G., Locke, J.S. Measurement of atmospheric corrosion fatigue crack growth rates on. International Journal of Fatigue. 2023; 167, Part A: 107368. https://doi.org/10.1016/j.ijfatigue.2022.107368.
  • 22. Meng, X., Yang, S., Huang, Y., Fang, Y., Gu, J., Xiong, Q., Duan, C. Microstructure characterization and mechanism of fatigue crack propagation of 6082 aluminum alloy joints. Materials Chemistry and Physics. 2021; 257: 123734.
  • 23. Yang, B., Wang, S., Li, J., Ding, X., Xiao, Q., Xiao, S. Study on fatigue crack growth in rail steel at numerical and. Materials. 2023; 16(2981).
  • 24. Li, X., Liu, C., Wang, X., Dai, Y., Zhan, M., Liu, Y., Yang, K., He, C., Wang, Q. Effect of microstructure on small fatigue crack initiation and early propagation behavior in super austenitic stainless steel 654SMO. International Journal of Fatigue. 2024; 179: 108022.
  • 25. Carpinteri, A., Are the Paris' law parameters dependent on each other?. Frattura ed Integrità Strutturale. 2007; 2: 10–16.
  • 26. Omar, I., Khan, M., Starr, A. Comparative analysis of machine learning models for predicting crack propagation under coupled load and temperature. Applied Sciences. 2023; 13(7212).
  • 27. Susmel, L. Estimating notch fatigue limits via a machine learning-based approach structured according to the classic Kf formulas. International Journal of Fatigue. 2024; 179: 108029.
  • 28. Remmal, A., Leblond, J.-B. Ductile rupture under cyclic loadings at high triaxiality: The influence of strain hardening and elasticity. Mechanics of Materials. 2024; 192: 104982.
  • 29. Calvin, G., Escalero, M., Zabala, H., Muñiz-Calven, M. Distribution of the through-thickness effective stress intensity factor range and its influence on fatigue crack growth rate curves. Theoretical and Applied Fracture Mechanics. 2022; 119: 103374.
  • 30. Burns, J.T., Boselli, J. Effect of plate thickness on the environmental fatigue crack growth behavior of AA7085-T7451. International Journal of Fatigue. 2016; 83: 253–268.
  • 31. Pilkey, W.D., Pilkey, D.F. Peterson’s Stress Concentration Factors, Third Edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008.
  • 32. Janosch, J., Huther, M., Kocak, M., Taylor, N. European Fitness for Service Network (FITNET) “Fatigue Module Development”. In: Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, New York, 2005.
  • 33. Ayatollahi, M.R., Rashidi Moghaddam, M., Berto, F. T-stress effects on fatigue crack growth – Theory and experiment. Engineering Fracture Mechanics. 2018; 187: 103–114.
  • 34. Tong, J. T-stress and its implications for crack growth. Engineering Fracture Mechanics. 2002; 69: 1325–1337.
  • 35. Murakami, Y. Stress Intensity Factors Handbook, Volume 1. Oxford: Pergamon Press, 1987.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f19d37ab-9d3a-472c-b3c9-2590718c586f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.