PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behavior of single-point harmonic producer indicators in electrified AC railways

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrified railways are an example of AC single phase distribution networks. A non-negligible amount of active and nonactive power may be related to harmonics, especially for distorted highly-loaded systems. The paper considers the relevance of the harmonic power terms in order to identify distortion sources in a single-point perspective, in line with the approach of EN 50463 for the quantification of the power and energy consumption. Some single-point Harmonic Producer Indicators (HPI) based on harmonic active power direction and nonactive distortion power terms are reviewed and evaluated using pantograph voltage and current measured during several hours of runs in two European AC railways (operated at 16.7 and 50 Hz). The HPI based on active power shows to be consistent and provides detailed information of rolling stock characteristic components under variable operating conditions; those based on nonactive distortion power are global indexes and hardly can operate with complex harmonic patterns in variable operating conditions.
Rocznik
Strony
641--657
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr., wzory
Twórcy
  • University of Genova, DITEN, Via Opera Pia 11A, 16145 Genova, Italy
Bibliografia
  • [1] Bongiorno, J., Boschetti, G., & Mariscotti, A. (2016). Low-Frequency Coupling: Phenomena in Electric Transportation Systems, IEEE Electrification Magazine, 4(3), 15-22. https://doi.org/10.1109/MELE.2016.2584959
  • [2] Mariscotti, A. (2019). Behaviour of Spectral Active Power Terms for the Swiss 15 kV 16.7 Hz Railway System. Proceedings of 10th 2019 IEEE 10th International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, Germany. https://doi.org/10.1109/AMPS.2019.8897777
  • [3] Mariscotti, A. (2019). Characterization of Active Power Flow at Harmonics for AC and DC Railway Vehicles. Proceedings of IEEE Vehicle Power and Propulsion Conference (VPPC), Vietnam. https://doi.org/10.1109/VPPC46532.2019.8952310
  • [4] Mariscotti, A. (2020). Impact of Harmonic Power Terms on the Energy Measurement in AC Railways. IEEE Transactions on Instrumentation and Measurement, 69(9), 6731-6738. https://doi.org/10.1109/TIM.2020.2992167
  • [5] Mariscotti, A. (2020). Uncertainty of the Energy Measurement Function deriving from Distortion Power Terms for a 16.7 Hz Railway. Acta Imeko, 9(2), 25-31. https://doi.org/10.21014/acta_imeko.v9i2.764
  • [6] Hinrichs, G., & Hegarty, J. (2016). Introduction of energy metering, settlement and billing at SBB, European Railway Review, 22(1), 39-41. https://www.globalrailwayreview.com/article/26308/introduction-of-energy-metering-settlement-and-billing-at-sbb/
  • [7] European Committee for Standards - Electrical. (2017). Railway applications - Energy measurement on board trains (EN 50463-2).
  • [8] European Committee for Standards - Electrical. (2012). Railway Applications - Power supply and rolling stock - Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability (EN 50388).
  • [9] Mariscotti, A. (2011). Direct Measurement of Power Quality over Railway Networks with Results of a 16.7 Hz Network. IEEE Transactions on Instrumentation and Measurement, 60(5), 1604-1612. https://doi.org/10.1109/TIM.2010.2089170
  • [10] Mariscotti, A. (2012). Results on the Power Quality of French and Italian 2x25 kV 50 Hz railways. Proceedings of International Instrumentation & Measurement Technology Conference (12MTC), Austria. https://doi.org/10.1109/I2MTC.2012.6229341
  • [11] European Committee for Standards - Electrical. (2017). Railway Applications - Fixed installations and rolling stock - Technical criteria for the coordination between traction power supply and rolling stock to achieve interoperability - Part 1 (prEN 50388-1).
  • [12] Costa, F. R., Santos, I. N., Silva, S. F. P., & De Oliveira, I. C. (2009). A case study of sharing the harmonic voltage distortion responsibility between the utility and the consumer. Proceedings of International Conference on Renewable Energies and Power Quality, Spain. https://doi.org/10.24084/repqj07.327
  • [13] Davis, E. J., Emanuel, A. E., & Pileggi, D. J. (2000). Evaluation of Single-Point Measurements Method for Harmonic Pollution Cost Allocation. IEEE Transactions on Power Delivery, 15(1), 14-18. https://doi.org/10.1109/61.847222
  • [14] Mariscotti, A. (2021). Experimental characterization of active and nonactive harmonic power flow of AC rolling stock and interaction with the supply network. IET Electrical Systems in Transportation.
  • [15] da Silva, R. P. B., Quadros, R., Shaker, H. R., & da Silva, L. C. P. (2019). Analysis of the Electrical Quantities Measured by Revenue Meters under Different Voltage Distortions and the Influences on the Electrical Energy Billing, Energies, 12, 4757. https://doi.org/10.3390/en12244757
  • [16] Olencki, A., & Mroz, P. (2014). Testing of energy meters under three-phase determined and random nonsinusoidal conditions. Metrology and Measurement Systems, 21(2), 217-232. https://doi.org/10.2478/mms-2014-0019
  • [17] Oliveira, L. T. S., de Oliveira, R. F. B., Macedo, J. R., & Leal, G. (2018). Performance analysis of active energy meters in non-sinusoidal conditions, Proceedings of Simposio Brasileiro de Sistemas Eletricos (SBSE), Brazil. https://doi.org/10.1109/SBSE.2018.8395631
  • [18] Cataliotti, A., Cosentino, V., Lipari, A., & Nuccio, S. (2009). Metrological Characterization and Operating Principle Identification of Static Meters for Reactive Energy: an Experimental Approach under Nonsinusoidal Test Conditions. IEEE Transactions on Instrumentation and Measurement, 58(5), 1427-1435. https://doi.org/10.1109/TIM.2008.2009134
  • [19] Kosobudzki, G., Nawrocki, Z., & Nowak, J. (2005). Measure of Electric Reactive Power. Metrology and Measurement Systems, 12(5), 131-150.
  • [20] Czarnecki, L. S. (1993). Physical Reasons of Currents RMS Value Increase in Power Systems with Nonsinusoidal Voltage. IEEE Transactions on Power Delivery, 8(1), 437-447. https://doi.org/10.1109/61.180366
  • [21] Xu, W., Liu, X., & Liu, Y. (2003). An Investigation on the Validity of Power-Direction Method for Harmonic Source Determination. IEEE Transactions on Power Delivery, 18(1), 214-219. https://doi.org/10.1109/TPWRD.2002.803842
  • [22] Barbaro, V., Cataliotti A., Cosentino V., & Nuccio S. (2007). A Novel Approach Based on Nonactive Power for the Identification of Disturbing Loads in Power Systems. IEEE Transactions on Power Delivery, 22(3), 1782-1789. https://doi.org/10.1109/TPWRD.2007.899624
  • [23] Cataliotti A., & Cosentino V. (2009). Disturbing loads identification in power systems: a single-point time-domain method based on the IEEE 1459-2000. IEEE Transactions on Instrumentation and Measurement, 58(5), 1436-1445. https://doi.org/10.1109/TIM.2009.2015180
  • [24] Cataliotti, A., & Cosentino, V. (2009). A single-point approach based on IEEE 1459-2000 for the identification of prevailing harmonic sources detection in distorted three phase power systems. Metrology and Measurement Systems, 16(2), 209-218.
  • [25] Cataliotti, A., & Cosentino, V. (2010). A New Measurement Method for the Detection of Harmonic Sources in Power Systems based on the Approach of the IEEE Std. 1459-2000. IEEE Transactions on Power Delivery, 25(1), 332-340. https://doi.org/10.1109/TPWRD.2009.2034480
  • [26] Balci, M.E., & Hocaoglu, M.H. (2013). A Current Decomposition-Based Method for Computationally Efficient Implementation of Power Resolution Meters in Nonsinusoidal Single-Phase Systems. Metrology and Measurement Systems, 20(2), 263-274. https://doi.org/10.2478/mms-2013-0023
  • [27] Stevanović, D., & Petković, P. (2014). A single-point method based on distortion power for the detection of harmonic sources in a power system. Metrology and Measurement Systems, 21(1), 3-14. https://doi.org/10.2478/mms-2014-0001
  • [28] IEEE (2010). IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions (IEEE Std 1459). https://doi.org/10.1109/IEEESTD.2010.5439063
  • [29] Hemmer, B., Mariscotti, A., & Wuergler, D. (2004). Recommendations for the calculation of the total disturbing return current from electric traction vehicles. IEEE Transactions on Power Delivery, 19(2), 1190-1197. https://doi.org/10.1109/TPWRD.2003.822962
  • [30] Richter, M., Komarnicki, P., & Hauer, I. (2018). Improving state estimation in smart distribution grid using synchrophasor technology: a comparison study. Archives of Electrical Engineering, 67(3), 469-483. https://doi.org/10.24425/123657
  • [31] Zajkowski, K., & Scaticailov, S. (2016). Determination of the environmental impact of reactive power compensation in the power grid. Nonconventional Technologies Review, 20(2), 54-61.
  • [32] Agamloh, E. B. (2017). Power and Efficiency Measurement of Motor-Variable-Frequency Drive Systems. IEEE Transactions on Industry Applications, 53(1), 766-773. https://doi.org/10.1109/TIA.2016.2602807
  • [33] Mazzanti, G., Passarelli. G., Russo, A., & Verde, P. (2006). The effects of voltage waveform factors on cable life estimation using measured distorted voltages. Proceedings of IEEE Power Engineering Society General Meeting, Canada. https://doi.org/10.1109/PES.2006.1709033
  • [34] Emanuel, A. E., & Wang, X. (1985). Estimation of Loss of Life of Power Transformers Supplying Nonlinear Loads. IEEE Transactions on Power Apparatus and Systems, 104(3), 628-636. https://doi.org/10.1109/TPAS.1985.318998
  • [35] Hu, H., Shao, Y., Tang, L., Ma, J., He Z., & Gao, S. (2018). Overview of Harmonic and Resonance in Railway Electrification Systems. IEEE Transactions on Industry Applications, 54(5), 5227-5245. https://doi.org/10.1109/TIA.2018.2813967
  • [36] Sharon, D. (1973). Reactive power definitions and power factor improvement in non-linear systems. Proceedings of the Institution of Electrical Engineers, 120(6), 704-706. https://doi.org/10.1049/piee.1973.0155
  • [37] Farhoodnea, M., Mohamed, A., & Shareef, H. (2011). A Single Point Measurement Method for Evaluating Harmonic Contributions of Utility and Customer in Power Distribution Systems. Journal of Applied Sciences, 11(2), 257-265. https://doi.org/10.3923/jas.2011.257.265
  • [38] Ferrari, P., Mariscotti, A., & Pozzobon, P. (2000). Reference curves of the pantograph impedance in DC railway systems. IEEE International Symposium on Circuits and Systems (ISCAS), Switzerland. https://doi.org/10.1109/ISCAS.2000.857155
  • [39] Bongiorno, J, Mariscotti, A. (2015). Evaluation of performances of indexes used for validation of simulation models based on real cases. International Journal of Mathematical Models and Methods in Applied Sciences, 9, 29-43.
  • [40] Robert, A., Deflandre, T., Gunther, E., Bergeron, R., Emanuel, A., Ferrante, A., Finlay, G. S., Gretsch, R., Guarini, A., Gutierrez Iglesias, J. L., Hartmann, D., Lahtinen, M., Marshall, R., Oonishi, K., Pincella, C., Poulsen, S., Ribeiro, P., Samotyj, M., Sand, K., & Zhelesko, Y. S. (1997). Guide for Assessing the Network Harmonic Impedance. 14th International Conference and Exhibition on Electricity Distribution. Part 1. Contributions, United Kingdom. https://doi.org/10.1049/cp:19970473
  • [41] Mariscotti, A., Giordano, D., Delle Femine, A., & Signorino, D. (2020). Filter Transients on-board DC Rolling Stock and Exploitation for the Estimate of the Line Impedance. Proceedings of International Instrumentation & Measurement Technology Conference (12MTC), Croatia. https://doi.org/10.1109/I2MTC43012.2020.9128903
  • [42] Crotti, G., Delle Femine, A., Gallo, D., Giordano, D., Landi, C., Luiso, M., Mariscotti, A.& Roccato, P. E. (2019). Pantograph-to-OHL Arc: Conducted Effects in DC Railway Supply System. IEEE Transactions on Instrumentation and Measurement, 68(10), 3861-3870. https://doi.org/10.1109/TIM.2019.2902805
  • [43] Mariscotti, A., & Giordano, D. (2020). Experimental Characterization of Pantograph Arcs and Transient Conducted Phenomena in DC Railways. Acta Imeko, 9(2), 10-17. https://doi.org/10.21014/acta_imeko.v9i2.761
  • [44] Wu, G., Wu, J., Wei, W., Zhou, Y., Yang, Z. & Gao, G. (2018). Characteristics of the Sliding Electric Contact of Pantograph/Contact Wire Systems in Electric Railways. Energies, 11(1), 17. https://doi.org/10.3390/en11010017
  • [45] Mariscotti, A. (2020). Data sets of measured pantograph voltage and current of European AC railways. Data in Brief, 30, 105477. https://doi.org/10.1016/j.dib.2020.105477
  • [46] International Electrotechnical Commission. (2008). Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected there to (IEC 61000-4-7).
  • [47] Boschetti, G., & Mariscotti, A. (2012). Integrated Electromechanical Simulation of Traction Systems: Relevant Factors for the Analysis and Estimation of Energy Efficiency. Proceedings of Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), Italy. https://doi.org/10.1109/ESARS.2012.6387412
  • [48] Bigharaz, M. H., Hosseinian, S. H., Afshar A., Suratgar, A. A., & Dehcheshmeh, M. A. (2019). A comprehensive simulator of AC autotransformer electrified traction system. International Journal of Power and Energy Conversion, 10(2), 129-147. https://doi.org/10.1504/IJPEC.2019.098619
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f19a2852-20b6-486e-b44a-f9094e698b96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.