PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

KOH-activated tire pyrolysis char as an adsorbent for chloroorganic water pollutants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Activated carbons (ACs) produced from end-of-life tires with different tire pyrolysis char (TPC)-to-activator (KOH) ratios of 1:2, 1:3, and 1:4 were prepared and characterized. These materials were used as adsorbents for the removal of two common chloroorganic water contaminants such as 2,4-dichlorophenol (DCP) and 2,4-dichlorophenoxyacetic acid (2,4-D). The adsorption kinetics, equilibrium adsorption, and effects of solution pH were investigated. The adsorption of both adsorbates was found to be pH-dependent and preferred in acidic environments. The adsorption kinetics was evaluated using pseudo-first-order and pseudo-second-order kinetic models and mechanism - using Weber-Morris and Boyd models. Results demonstrated that the adsorption of DCP and 2,4-D on all ACs followed the pseudo-second-order model and was controlled by film diffusion. The Langmuir isotherm described the equilibrium data better than the Freundlich isotherm model. The maximum adsorption capacity of DCP adsorbed on AC1:2, AC1:3, and AC1:4 at equilibrium was 0.582, 0.609, and 0.739 mmol/g, respectively, while the maximum adsorption capacities for 2,4-D were 0.733, 0.937, and 1.035 mmol/g, respectively. The adsorption rate and efficiency were closely correlated with the porous structure of the tested adsorbents. The results showed that the activated carbons obtained from the scrap of end-of-life tires as raw materials could be used as a low-cost and alternative adsorbent for the removal of chlorinated organic pollutants from water.
Rocznik
Strony
art. no. e79
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Poznań University of Life Sciences, Department of Chemical Wood Technology, ul. Wojska Polskiego 38/42, Poznań, Poland
  • Poznań University of Life Sciences, Department of Chemical Wood Technology, ul. Wojska Polskiego 38/42, Poznań, Poland
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Abdel Daiem M.M., Rivera-Utrilla J., Sánchez-Polo M., Ocampo-Pérez R., 2015. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Sci. Total Environ., 537, 335–342. DOI: 10.1016/j.scitotenv.2015.07.131.
  • 2. Alexandre-Franco M., Fernández-González C., Alfaro-Domínguez M., Gómez-Serrano V., 2011. Adsorption of cadmium on carbonaceous adsorbents developed from used tire rubber. J. Environ. Manage., 92, 2193–2200. DOI: 10.1016/j.jenvman. 2011.04.001.
  • 3. Ali U.F.M., Hussin F., Gopinath S.C.B., Aroua M.K., Khamidun M.H., Jusoh N., Ibrahim N., Ahmad S.F.K., 2022. Advancement in recycling waste tire activated carbon to potential adsorbents. Environ. Eng. Res., 27, 210452. DOI: 10.4491/eer.2021.452.
  • 4. Białek A., Kuśmierek K., Świątkowski A., 2017. Adsorption and desorption of phenol, 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on activated carbons. Przem. Chem., 96, 2140–2144. DOI: 10.15199/62.2017.10.24.
  • 5. Blachnio M., Kusmierek K., Swiatkowski A., Derylo-Marczewska A., 2023a. Adsorption of phenoxyacetic herbicides from water on carbonaceous and non-carbonaceous adsorbents. Molecules, 28, 5404. DOI: 10.3390/molecules28145404.
  • 6. Blachnio M., Kusmierek K., Swiatkowski A., Derylo-Marczewska A., 2023b. Waste-based adsorbents for the removal of phenoxy-acetic herbicides from water: a comprehensive review. Sustainability, 15, 16516. DOI: 10.3390/su152316516.
  • 7. Boehm H.P., 2008. Chapter thirteen – Surface chemical characterization of carbons from adsorption studies. In: Bottani E.J., Tascón J.M.D. (Eds.), Adsorption by carbons. Elsevier, 301–327. DOI: 10.1016/B978-008044464-2.50017-1.
  • 8. Carmona M., Garcia M.T., Carnicer A., Madrid M., Rodríguez J.F., 2014. Adsorption of phenol and chlorophenols onto granular activated carbon and their desorption by super-critical CO2. J. Chem. Technol. Biotechnol., 89, 1660–1667. DOI: 10.1002/jctb.4233.
  • 9. Crini G., Lichtfouse E., Wilson L.D., Morin-Crini N., 2019. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett., 17, 195–213. DOI: 10.1007/s10311-018-0786-8.
  • 10. Czaplicka M., 2004. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ., 322, 21–39 DOI: 10.1016/j.scitotenv.2003.09.015.
  • 11. Dąbrowski A., Podkościelny P., Hubicki Z., Barczak M., 2005. Adsorption of phenolic compounds by activated carbon – a critical review. Chemosphere, 58, 1049–1070. DOI: 10.1016/j.chemosphere.2004.09.067.
  • 12. Doczekalska B., Bartkowiak M., Łopatka H., Zborowska M., 2022. Activated carbon prepared from corn biomass by chemical activation with potassium hydroxide. BioResour., 17, 1794–1804. DOI: 10.15376/biores.17.1.1794-1804.
  • 13. Doczekalska B., Bartkowiak M., Waliszewska B., Orszulak G., Cerazy-Waliszewska J., Pniewski T., 2020. Characterization of chemically activated carbons prepared from miscanthus and switchgrass biomass. Materials, 13, 1654. DOI: 10.3390/ma13071654.
  • 14. Garba Z.N., Zhou W., Lawan I., Xiao W., Zhang M., Wang L., Chen L., Yuan Z., 2019. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review. J. Environ. Manage., 241, 59–75. DOI: 10.1016/j.jenvman.2019.04.004.
  • 15. Hamdaoui O., Naffrechoux E., 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater., 147, 381–394. DOI: 10.1016/j.jhazmat.2007.01.021.
  • 16. Hashimoto M., Taniguchi S., Takanami R., Giri R.R., Ozaki H., 2010. Oxidative degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in subcritical and supercritical waters. Water Sci. Technol., 62, 484–490. DOI: 10.2166/wst.2010.329.
  • 17. Ighalo J.O., Ojukwu V.E., Umeh C.T., Aniagor C.O., Chinyelu C.E., Ajala O.J., Dulta K., Adeola A.O., Rangab-hashiyam S., 2023. Recent advances in the adsorptive removal of 2,4-dichlorophenoxyacetic acid from water. J. Water Proc. Eng., 56, 104514. DOI: 10.1016/j.jwpe.2023.104514.
  • 18. Jedynak K., Charmas B., 2024. Adsorption properties of biochars obtained by KOH activation. Adsorption, 30, 167–183. DOI: 10.1007/s10450-023-00399-7.
  • 19. Jones I., Zhu M., Zhang J., Zhang Z., Preciado-Hernandez J. Gao J., Zhang D., 2021. The application of spent tyre activated carbons as low-cost environmental pollution adsorbents: a technical review. J. Cleaner Prod., 312, 127566. DOI: 10.1016/ j.jclepro.2021.127566.
  • 20. Kim T.-Y., Park S.-S., Kim S.-J., Cho S.-Y., 2008. Separation characteristics of some phenoxy herbicides from aqueous solution. Adsorption, 14, 611–619. DOI: 10.1007/s10450-008-9129-6.
  • 21. Kuśmierek K., Pakuła M., Biniak S., Świątkowski A., Dąbek L., 020b. Adsorption and electrodegradation of phenoxyacetic acids on various activated carbons. Int. J. Electrochem. Sci., 15, 5770–5781. DOI: 10.20964/2020.06.25.
  • 22. Kuśmierek K., Szala M., Świątkowski A., 2016. Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solution on carbonaceous materials obtained by combustion synthesis. J. Taiwan Inst. Chem. Eng., 63, 371–378. DOI: 10.1016/j.jtice.2016.03.036.
  • 23. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2021a. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part I. preparation of adsorbent and adsorption from gas phase. J. Anal. Appl. Pyrolysis, 157, 105205. DOI: 10.1016/j.jaap.2021.105205.
  • 24. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2020a. Adsorption properties of activated tire pyrolysis chars for phenol and chlorophenols. Chem. Eng. Technol., 43, 770–780. DOI: 10.1002/ceat.201900574.
  • 25. Kuśmierek K., Świątkowski A., Kotkowski T., Cherbański R., Molga E., 2021b. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. J. Anal. Appl. Pyrolysis, 158, 105206. DOI: 10.1016/j.jaap.2021.105206.
  • 26. Legocka I., Kuśmierek K., Świątkowski A., Wierzbicka E., 2022. Adsorption of 2,4-D and MCPA herbicides on carbon black modified with hydrogen peroxide and aminopropyltriethoxysilane. Materials, 15, 8433. DOI: 10.3390/ma15238433.
  • 27. Li Y., Zhang N., 2019. Adsorption of phenol and 2,4-dichlorophenol from wastewater: kinetic and equilibrium studies. Desalin. Water Treat., 170, 225–238. DOI: 10.5004/dwt.2019.24724.
  • 28. Moszczyński W., Białek A., 2012. Ecological production technology of phenoxyacetic herbicides MCPA and 2,4-D in the highest world standard. In: Hasaneen M.N., (Ed.), Herbicides – properties, synthesis and control of weeds. Intech. DOI: 10.5772/32140.
  • 29. Mui E.L.K., Ko D.C.K., McKay G., 2004. Production of active carbons from waste tyres – a review. Carbon, 42, 2789–2805. DOI: 10.1016/j.carbon.2004.06.023.
  • 30. Muttil N., Jagadeesan S., Chanda A., Duke M., Singh S.K., 2023. Production, types, and applications of activated carbon derived from waste tyres: an overview. Appl. Sci., 13, 257. DOI: 10.3390/app13010257.
  • 31. Nandi R., Jha M.K., Guchhait S.K., Sutradhar D., Yadav S., 2023. Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity. ACS Omega, 8, 4802–4812. DOI: 10.1021/acsomega.2c06955. Nasser S.M., Abbas M., Trari M., 2024. Understanding the ratelimiting step adsorption kinetics onto biomaterials for mechanism adsorption control. Prog. React. Kinet. Mech., 49, 1–26. DOI:10.1177/14686783241226858.
  • 32. Ramírez-Arias A.M., Moreno-Piraján J.C., Giraldo L., 2020. Adsorption of Triton X-100 in aqueous solution on activated carbon obtained from waste tires for wastewater decontamination. Adsorption, 26, 303–316. DOI: 10.1007/s10450-019-00157-8.
  • 33. Szymański G.S., Karpiński Z., Biniak S., Świątkowski A., 2002. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon, 40, 2627–2639. DOI: 10.1016/S0008- 6223(02)00188-4.
  • 34. Tan K.L., Hameed B.H., 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng., 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.
  • 35. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 87, 1051–1069. DOI: 10.1515/pac-2014-1117.
  • 36. WHO, 2003a. Chlorophenols in drinking water, Background document for development of WHO guidelines for drinking-water quality. WHO/SDE/WSH/03.04/47, World Health Organization, Geneva, 2003.
  • 37. WHO, 2003b. 2,4-D in drinking water, Background document for development of WHO guidelines for drinking-water quality. WHO/SDE/WSH/03.04/70, World Health Organization, Geneva, 2003.
  • 38. Yadav S., Kumar S., Haritash A.K., 2023. A comprehensive review of chlorophenols: fate, toxicology and its treatment. J. Environ. Manage., 342, 118254. DOI: 10.1016/j.jenvman.2023.118254.
  • 39. Zerin N.H., Rasul M.G., Jahirul M.I., Sayem A.S.M., 2023. End-of-life tyre conversion to energy: a review on pyrolysis and activated carbon production processes and their challenges. Sci. Total Environ., 905, 166981. DOI: 10.1016/j.scitotenv.2023.166981.
  • 40. Zerin N.H., Rasul M.G., Jahirul M.I., Sayem A.S.M., Haque R., 2024. Electrochemical application of activated carbon derived from end-of-life tyres: A technological review. Sustainability, 16, 47. DOI: 10.3390/su16010047.
  • 41. Zhang J., Gao J., Chen Y., Hao X., Jin X., 2017. Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys., 7, 1628–1633. DOI: 10.1016/j.rinp.2017.04.028.
  • 42. Zhou X., Zhou X., 2014. The unit problem in the thermo-dynamic calculation of adsorption using the Langmuir equation. Chem. Eng. Commun., 201, 1459–1467. DOI: 10.1080/ 00986445.2013.818541.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f197c853-eb71-4c15-acdb-2ef98158ee37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.