PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methane Production from Farmed Rainbow Trout Byproducts by Anaerobic Digestion in Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fish are a staple in human nutrition because of their great nutritional and dietetic value. The processing stages of these fish before being sold generates an important quantity of byproducts (head, viscera, skeleton, fins, scales, tail, and skin). This study aims to determine the methane production, methanogenic potential and the percentage of volatile solids removed by the anaerobic digestion process. The experiment was carried out at mesophilic conditions in a Continuous Stirred-Tank Reactor (CSTR) with a discontinuous feeding mode (batch). The results obtained showed that the byproducts of farmed rainbow trout have a maximum methane production 1176 Nml whose methanogenic potential is 206.68 Nml/gVS with a biodegradability equal to 57.95%. For the kinetic modeling, four models were applied for an adequate fit of the experimental results (first order, MGompertz, transfererence function, and logistic function). The production of methane closest to the experimental results is that estimated by the logistic function with a methanogenic potential of 212.21 Nml/gVS whose correlation coefficient R2= 0.9870 and a very low percentage of error (1.18%), also the MGompertz model presented results adapted to those of the experiment with a methanogenic potential equal to 223.61 Nml/gVS (R2= 0.9889 and %error = 2.95); This confirms that these two kinetic models are the most suitable for this type of substrate.
Twórcy
  • Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Bibliografia
  • 1. Afilal, M.E., Elasri, O., Merzak, Z. 2014. Caractérisations des déchets organiques et évaluation du potentiel Biogaz (Organic waste characterization and evaluation of its potential biogas), 10.
  • 2. Albuzio, A., Durigon, V., Maria Provenzano, M. 2011. Anaerobic digestion of trout by-products. Waste and Biomass Valorization, 2, 127–131. https://doi.org/10.1007/s12649-011-9070-x
  • 3. Bakraoui, M., Karouach, F., Ouhammou, B., Aggour, M., El Bari, H.2019. Kinetics study of the methane production from experimental recycled pulp and paper sludge by CSTR technology. Journal of Material Cycles and Waste Management, 21. https://doi.org/10.1007/s10163-019-00894-6.
  • 4. Beniche, I. 2021. Optimisation Du Rapport Carbone/Azote Des Résidus Agricoles Et Des Déchets Alimentaires Par Co-Digestion Anaérobie: Expérimentation Et Etude Cinétique. http://helvia.uco.es/xmlui/handle/10396/21433.
  • 5. Borja, R., Martín, A., Banks, C.J., V. Alonso, and A. Chica. 1995. A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environmental Pollution, 88(1), 13–18. https://doi.org/10.1016/0269-7491(95)91043-K
  • 6. Bridgewater, L.L., Baird, R.B., Eaton, A.D., Eugene, W. Rice, American Public Health Association, American Water Works Association, and Water Environment Federation, Eds. 2017. Standard Methods for the Examination of Water and Wastewater. 23rd edition. Washington, DC: American Public Health Association.
  • 7. Bücker, F., Marder, M., Peiter, M.R., Lehn, D.N., Esquerdo V.M., de Almeida Pinto L.A., Odorico K. 2020. Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy, 147(P1), 798–805.
  • 8. Chen, Y.R., A.G. Hashimoto. 1978. Kinetics of Methane Fermentation. CONF-780549-8. Science and Education Administration, Clay Center, NE (USA). Meat Animal Research Center. https://www.osti.gov/biblio/6534841
  • 9. Chen, Y.R., Hashimoto, A.G. 1980. Substrate utilization kinetic model for biological treatment process. Biotechnol. Bioeng., 22(10), 2081‑2095. DOI: 10.1002/bit.260221008.
  • 10. Contois, D.E. 1959. Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures | Microbiology Society.
  • 11. https://www.microbiologyresearch.org/content/journal/micro/10.1099/00221287-21-1-40.
  • 12. Corkum, J. 2003. Management of wastes from atlantic seafood processing operations national programme of action – atlantic regional team. AMEC Earth & Environmental Ltd., Dec. 5, 2003. Disponible sur: https://p2infohouse.org/ref/42/41590.pdf
  • 13. Djaafri, M., Kaloum, S., Khelafi, M., Tahri, A., Salem, F., Kaidi, K., Barako, O., Kadri, A., Bensmail, L., Amahrouch, A. 2014. Amélioration de la digestion anaérobie des déchet ménagers (déchets de restaurant) en utilisant un prétraitement physique, 6.
  • 14. Edwiges, Thiago, Laercio Frare, Bruna Mayer, Leonardo Lins, Jin Mi Triolo, Xavier Flotats, and Mônica Sarolli Silva de Mendonça Costa. 2018. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71(1), 618–625. https://doi.org/10.1016/j.wasman.2017.05.030.
  • 15. Eiroa, M., Costa, J.C., Alves, M.M., Kennes, C., Veiga, M.C. 2012. Evaluation of the biomethane potential of solid fish waste. Waste Management, 32(7), 1347–1352. https://doi.org/10.1016/j.wasman.2012.03.020
  • 16. Escobar, J.P. 2019. Biomethane from fish waste as a source of renewable energy for artisanal fishing communities. Sustainable Energy Technologies and Assessments, 34, 110.
  • 17. FAO, 2020. The State of World Fisheries and Aquaculture 2020: Sustainability in action. La situation mondiale des pêches et de l’aquaculture (SOFIA) 2020. Rome, Italy: FAO. https://doi.org/10.4060/ca9229en.
  • 18. Fongsatitkul, P., Elefsiniotis, P., Wareham, D.G. 2012. Two-phase anaerobic digestion of the organic fraction of municipal solid waste: Estimation of methane production. Waste Management & Research, 30(7), 720–726. https://doi.org/10.1177/0734242X11429987
  • 19. Fonseca, C., Frare L.M., D’avila, L., Edwiges, T. 2020. Influence of different waste compositions from tilapia fish on methane production. Journal of Cleaner Production, https://dx.doi.org/10.1016/j.jclepro.2020.121795
  • 20. Ghaly, A.E. Vegneshwaran vasudevan ramakrishnan, M.S. Brooks, S.M. Budge, and Deepika Dave. 2013. Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. Journal of Microbial and Biochemical Technology, 5(1), 107–129. https://doi.org/10.4172/1948-5948.1000110
  • 21. Gruduls, A, Balina, K., Ivanovs, K., Romagnoli, F. 2018. Low temperature BMP tests using fish waste from invasive round goby of the Baltic Sea. Agronomy Research, 16(1). https://doi.org/10.15159/AR.18.073
  • 22. Hariri, O.E., Bouchriti, N., Bengueddour, R. 2017. Occurrence et evaluation du risque de l’histamine dans les produits de la peche commercialises sur le marche Marocain. European Scientific Journal, ESJ, 13(27), 225–225. https://doi.org/10.19044/esj.2017.v13n27p225
  • 23. Helrich, K. 1990. AOAC: Official Methods of Analysis. Published by Assocation of Official Analytical Chemists, 1, 771.
  • 24. Islam, M.N., Park, K.J., Yoon, H.S. 2012. Methane production potential of food waste and food waste mixture with swine manure in anaerobic digestion. Journal of Biosystems Engineering, 37(2), 100–105. https://doi.org/10.5307/JBE.2012.37.2.100
  • 25. Ivanovs, K., Spalvins, K., Blumberga, D. 2018. Approach for Modelling Anaerobic Digestion Processes of Fish Waste.” Energy Procedia, 147, 390–96. https://doi.org/10.1016/j.egypro.2018.07.108.
  • 26. Kafle, G.K., Kim, S.H. 2012. Evaluation of the biogas productivity potential of fish waste: a lab scale batch study. Journal of Biosystems Engineering, 37(5), 302–313. https://doi.org/10.5307/JBE.2012.37.5.302
  • 27. Kafle, G.K., Kim, S.H., Sung, K.I. 2013. Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresource Technology, 127(January), 326–336. https://doi.org/10.1016/j.biortech.2012.09.032
  • 28. Kassuwi, S., Mshandete A., Kivaisi, A. 2012. Anaerobic co-digestion of biological pre-treated nile perch fish solid waste with vegetable fraction of market solid waste. American Journal of Agricultural and Biological Science, 7, 1016–1031.
  • 29. Lahboubi, N., Karouach, F., Bakraoui, M., El Gnaoui, Y., Essamri, A., El Bari, H. 2022. Effect of alkali-NaOH pretreatment on methane production from anaerobic digestion of date palm waste. Ecological Engineering & Environmental Technology, 23(2), 78–89. https://doi.org/10.12912/27197050/144846.
  • 30. MacLeod, M.J., Mohammad R. Hasan, David H. F. Robb, and Mohammad Mamun-Ur-Rashid. 2020. Quantifying greenhouse gas emissions from global aquaculture. Scientific Reports, 10(1), 11679. https://doi.org/10.1038/s41598-020-68231-8.
  • 31. Mshandete, A., Amelia Kivaisi, A., Rubindamayugi, M., Mattiasson, B. 2004. Anaerobic batch codigestion of sisal pulp and fish wastes. Bioresource Technology, 95(1), 19–24. https://doi.org/10.1016/j.biortech.2004.01.011
  • 32. Nges, I.A., Mbatia, B., Björnsson, L. 2012. Improved utilization of fish waste by anaerobic digestion following Omega-3 fatty acids extraction. Journal of Environmental Management, 110, 159–165. https://doi.org/10.1016/j.jenvman.2012.06.011.
  • 33. Oke, A. 2013. The utilization of fish and fish farm wastes in biogas production: A review. Advances in Agriculture, Sciences and Engineering Research, 3, 656–667.
  • 34. Ourradi, H., Lahboubi, N., Habchi, S., Hanine, H., El Bari, H. 2022. Methane production from date seed cake (Phoenix Dactylifera L.) using mesophilic fedbatch anaerobic digestion. Cleaner Waste Systems, 2, 100009. https://doi.org/10.1016/j.clwas.2022.100009
  • 35. Raposo, F., Borja, R., Martín, M.A., Martín, A., de la Rubia, M.A., Rincón, B. 2009. Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chemical Engineering Journal, 149(1), 70–77. https://doi.org/10.1016/j.cej.2008.10.001
  • 36. Redzwan, G., Banks, C. 2004. The use of a specific function to estimate maximum methane production in a batch-fed anaerobic reactor. Journal of Chemical Technology & Biotechnology, 79(10), 1174–1178. https://doi.org/10.1002/jctb.1107
  • 37. Thouand, G., Durand, M., Maul, A., Gancet, C., Blok, H. 2011. New concepts in the evaluation of biodegradation/persistence of chemical substances using a microbial inoculum. Frontiers in Microbiology, 2. https://www.frontiersin.org/articles/10.3389/fmicb.2011.00164.
  • 38. Tosun, I., Talha Gönüllü, M., Günay, A. 2004. Anaerobic digestion and methane generation potential of rose residue in batch reactors. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39(4), 915–925. https://doi.org/10.1081/ese-120028402
  • 39. Zwietering, M.H., Jongenburger I., Rombouts, F.M., Van’t Riet, K. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1973d45-35e2-4956-83d3-d0e5e10d1875
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.