PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tortuosity in coronary artery has been found to be greatly related to the potential sites of stenosis in these last years. Many investigations have been carried out based on the tool of Computational Fluid Dynamics (CFD) mainly focusing on the influences of curved artery in blood flow. Within the limited investigations of coupling between stenosis and tortuosity, the stenosis has been considered to be located at the tortuous segment. However, with recent clinical studies, the case of stenosis occurred at non-tortuous segment before tortuosities has been confirmed which has not been paid enough attention yet. Therefore, the present study aims to investigate the disturbed streamlines and hemodynamics in curved and spiral artery considering symmetrical and asymmetrical stenosis upstream these tortuosities. Different stenosis severities, pulse rates and distances between stenosis and tortuosity as controlling parameters have been studied. The distribution of time averaged wall shear stress (TAWSS) and streamlines through tortuous segment have been displayed in order to determine the potential disease sites. Artery surface of TAWSS below critical value has been quantified as well to evaluate the risks of atherosclerosis. The results reveal that larger artery surface of TAWSS below critical value generally goes with smaller pulse rate, larger stenosis severity and distance between stenosis and tortuosity both for curved and spiral artery. However, exceptions were found in the cases of distance of 6 mm in curved artery with symmetrical stenosis and stenosis severity of 50% in spiral artery. Moreover, the spiral tortuosity tends to suppress the potential risks of atherosclerosis compared to curved tortuosity.
Twórcy
autor
  • LIFSE, Arts et Métiers, 151 Boulevard de l'Hopital, Paris, France; LIMSI, CNRS, Université Paris-Saclay, Orsay Cedex, France; Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
  • LIFSE, Arts et Métiers, 151 Boulevard de l'Hopital, 75013 Paris, France; LIMSI, CNRS, Université Paris-Saclay, Orsay Cedex, France
autor
  • LIFSE, Arts et Métiers, 151 Boulevard de l'Hopital, Paris, France
Bibliografia
  • [1] Gupta A, Panda P, Sharma Y, Mahesh A, Sharma P, Mahesh NK. Clinical profile of patients with coronary tortuosity and its relation with coronary artery disease. Int J Cardiovasc Res 2018;4(2):66–71.
  • [2] Van Dalen BM, Tzikas A, Soliman OII, Kauer F, Heuvelman HJ, Vletter WB, et al. Left ventricular twist and untwist in aortic stenosis. Int J Cardiol 2011;148(3):319–24.
  • [3] Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 2011;44:2021–30.
  • [4] Long Q, Xu XY, Ramnarine KV, Hoskins P. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech 2001;34:1229–42.
  • [5] Foong LK, Zarringhalam M, Toghraie D, Izadpanahi N, Yan SR, Rostami S. Numerical study for blood rheology inside an artery: the effect of stenosis and radius on the flow behavior. Comp Meth Prog Bio 2020;193:105457.
  • [6] Yan SR, Zarringhalam M, Toghraie D, Foong LK, Talebizadehsardari P. Numerical investigation of nonNewtonian blood flow within an artery with cone shape of stenosis in various stenosis angle. Comput Meth Prog Bio 2020;192:105434.
  • [7] Akbar NR. Non-Newtonian model study for blood flow through a tapered artery with a stenosis. Alex Eng J 2016;55:321–9.
  • [8] Sood T, Roy S, Pathak M. Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models. Math Biosci 2018;298:1–18.
  • [9] Khosravani-Rudpishi M, Joharimoghadam A, Rayzan E. The significant coronary tortuosity and atherosclerotic coronary artery disease; What is the relation? J Cardiovasc Thorac Res 2018;10(4):209–21.
  • [10] Zhang C, Xie S, Li S, Pu F, Deng X, Fan Y, et al. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses. J Biomech 2012;45(1):83–9.
  • [11] Qiao AK, Guo XL, Wu SG, Zeng YJ, Xu XH. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries. Med Eng Phys 2004;26(7):545–52.
  • [12] Xie X, Wang Y, Zhu H, Zhou J. Computation of hemodynamics in tortuous left coronary artery: a morphological parametric study. J Biomech Eng 2014;136 (10):101006.
  • [13] Jarrahi M, Castelain C, Peerhossaini H. Laminar sinusoidal and pulsatile flows in a curved pipe. J appl fluid mech 2011;4:21–6.
  • [14] Najjari MR, Plesniak MW. Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions. Exp Fluids 2016;57(6):100.
  • [15] Siggers JH, Waters SL. Steady flows in pipes with finite curvature. Phys Fluids (1994) 2005;17:1–18.
  • [16] Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng 2002;124:378.
  • [17] Dash RK, Jayaraman G, Mehta KN. Flow in a catheterized curved artery with stenosis. J Biomech 1999;32:49–61.
  • [18] Wang L, Zhao F, Wang DM, Hu S, Liu JC, Zhou ZL, et al. Pressure drop in tortuosity/kinking of the internal carotid artery: simulation and clinical investigation. Biomed Res Int 2016;2016:1–8.
  • [19] Santamarina A, Weydahl E, Siegel J, Moore J. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann Biomed Eng 1998;26(6):944–54.
  • [20] Xie X, Wang Y, Zhou H. Impact of coronary tortuosity on the coronary blood flow: a 3D computational study. J Biomech 2013;46(11):1833–41.
  • [21] Buradi A, Mahalingam A. Impact of coronary tortuosity on the artery hemodynamics. Biocybern Biomed Eng 2020;40:126–47.
  • [22] Liu GY, Wu J, Huang W, Wu W, Zhang H, Wong KKL, et al. Numerical simulation of flow in curved coronary arteries with progressive amounts of stenosis using fluid-structure interaction modelling. J Med Imaging Health Inform 2014;4 (4):605–11.
  • [23] Liu B. The influences of stenosis on the downstream flow pattern in curved arteries. Med Eng Phys 2007;29:868–76.
  • [24] Biglarian M, Larimi MM, Afrouzi HH, Moshfegh A, Toghraie D, Javadzadegan A, et al. Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models. Comput Meth Prog Bio 2020;185:105170.
  • [25] Li Y, Feng Y, Ma GS, Shen CX, Liu NF. Coronary tortuosity is negatively correlated with coronary atherosclerosis. J Int Med Res 2018;46(12):5205–9.
  • [26] Han HC. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res 2012;49:185–97.
  • [27] Gundelwein L, Miro J, Gonzalez BF, Lapierre C, Rohr K, Duoong L. Personalized stent design for congenital heart defects using pulsatile blood flow simulations. J Biomech 2018;81:68–75.
  • [28] Chabi F, Champmartin S, Sarraf CH, Noguera R. Critical evaluation of three hemodynamic models for the numerical simulation of intra-stent flows. J Biomech 2015;48(10):1769–76.
  • [29] Kelle S, Hays AG, Hirsch GA, Gerstenblith G, Miller JM, Steinberg AM, et al. Coronary artery distensibility assessed by 3.0 Tesla coronary magnetic resonance imaging in subjects with and without coronary artery disease. Am J Cardio 2011;108:491–7.
  • [30] Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 2008;153:1589–601.
  • [31] Kim HJ, Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Developing computational methods for threedimensional finite element simulations of coronary blood flow. Finite Elem Anal Des 2010;46:514–25.
  • [32] Gudiño E, Sequeira A. 3D mathematical model for blood flow and non-Fickian mass transport by a coronary drugeluting stent. Appl Math Model 2017;46:161–80.
  • [33] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 1999;282:2035–42.
  • [34] Tricot O, Mallat Z, Heymes C, Belmin J, Lesèche G, Tedgui A. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 2000;101:2450–3.
  • [35] Westein E, van der Meer AD, Kuijpers MJ, Frimat JP, van den Berg A, Heemskerk JW. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci U S A 2013;110:1357–62.
  • [36] Zhan F, Fan Y, Deng X. Effect of swirling flow on platelet concentration distribution in small-caliber artificial grafts and end-to-end anastomoses. Acta Mech Sin 2011;27:833–9.
  • [37] Sun A, Fan Y, Deng X. Intentionally induced swirling flow may improve the hemodynamic performance of coronary bifurcation stenting. Catheter Cardiovasc Interv 2012;79:371–7.
  • [38] De Nisco G, Kok AM, Chiastra C, Gallo D, Hoogendoorn A, Migliavacca F, et al. The atheroprotective nature of helical flow in coronary arteries. Ann Biomed Eng 2018;2:425–38.
  • [39] De Nisco G, Hoogendoorn A, Chiastra C, Gallo D, Kok AM, Morbiducci U, et al. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis 2020;300:39–46.
  • [40] Houston JG, Gandy SJ, Milne W, Dick JB, Belch JJ, Stonebridge PA. Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol Dial Transplant 2004;19:1786–91.
  • [41] Siogkas E, Sakellarios A, Exaechos T, Parodi O. Blood flow in arterial segments: rigid vs. Deformable walls simulationsn. J Serb Soc Comput Mech 2011;5:69–77.
  • [42] Haynes RH. Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol-Legacy Content 1960;198:1193–200.
  • [43] Stadler AA, Zilow EP, Linderkamp O. Blood viscosity and optimal hematocrit in narrow tubes. Biorheology 1990;27:779–88.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f194dc52-aff5-4b71-be48-6a3b2af9280a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.