PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of crystallinity and surface silanol groups on rheological properties of different sepiolites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, differences in the rheological properties of three different types of brown sepiolites (K1, K2, and K3) along with one beige (B) sepiolite with different physicochemical properties were explained based on their crystallinity and level of surface silanol groups. Towards this aim, SEM images, XRD and chemical analyses, cation exchange capacity (CEC), and water absorption tests were conducted along with surface area measurements and time-dependent pH profiles. The pH profiles at 3% by wt. revealed that each sepiolite sample attained the equilibrium at different times. These differences showed a parallel behavior with the degree of crystallinity. While sepiolite with better crystallinity (K1) was rather slow in reaching the equilibrium pH, the sepiolites with poor crystallinity (B and K3) reached their equilibrium pH more quickly. The rheological studies conducted with different sepiolites at 3% solids concentration exhibited time-dependent flow of the Bingham plastic model and thixotropic. Differences observed in the rheological behavior of sepiolites were found to correlate with the fiber size, CEC, surface area, and water absorption. The results further indicated that sepiolites with low crystallinity or high level of surface silanol groups (K3 and B sepiolites) show the best rheological properties.
Słowa kluczowe
Rocznik
Strony
art. no. 153947
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Çanakkale Onsekiz Mart University, Mining Engineering Department, 17400, Canakkale, Turkey
  • Balikesir University, Mining Department, Balikesir, Turkey
  • Istanbul University-Cerrahpasa, Mining Engineering Department, 34500, Buyukcekmece, Istanbul, Turkey
  • Istanbul Technical University, Mineral Processing Engineering Department, 34469, Maslak, Istanbul, Turkey
  • Harran University, Rectorate, Şanlıurfa, Turkey
Bibliografia
  • AHLRICHS, J.L., SERNA, C., and SERRATASO, J.M., 1975. Structural hydroxyls in sepiolites. Clays and Clay Minerals, 23: 119-124.
  • ALAN, N., İŞÇİ, S., 2014. Surface modification of sepiolite particles with polyurethane and polyvinyl alcohol. Progress in Organic Coatings, 77: 444–448.
  • ALKAN, M., DEMIRBAŞ, Ö. and DOĞAN, M., 2005. Electrokinetic properties of sepiolite suspensions in different electrolyte media. Journal of Colloid and Interface Science, 281: 240-248.
  • ALVAREZ, A., 1984. Sepiolite: Properties and Uses, In: Palygorskite-sepiolite occurrences, genesis and uses. Editors Singer, A. and Galan, E., Developments in Sedimentology. 37: Elsevier, Amsterdam, pp. 253-287.
  • ÁLVAREZ, A., SANTARÉN, J., ESTEBAN-CUBILLO, A., and APARICIO, P., 2011. Current industrial applications of palygorskite and sepiolite. Editors Emilio Galan and Arieh Singer. Developments in Clay Science. 3: Elsevier, Amsterdam, The Netherlands. pp. 281-298.
  • AZNAR, A.J., CASAL, B., RUIZ-HITZKY, E., LOPEZ-ARBELOA, F., SANTAREN, J. and ALVAREZ, A., 1992. Adsorpyion of methylene blue on sepiolite gels: Spectroskopic and rheological studies. Clay Minerals, 27: 101-108.
  • BARRER, R.M. and MACKENZIE, N., 1954. Sorption by attapulgite: Part I. availability of intracrystalline channels. Journal of Physical Chemistry, 58: 560-567.
  • BILOTTI, E., DUQUESNE, E., DENG, H., ZHANG, R., QUERO, R., GEORGIADES, S.N., FISCHER, H.R., DUBOIS, P., PEIJS, T., 2014. In situ polymerised polyamide 6/sepiolite nanocomposites: Effect of different interphases. European Polymer Journal, 56: 131–139.
  • BINGHAM, E.C., 1922. Fluidity and Plasticity. McGraw-Hill.
  • BRICKER, O.P., NESBITT, H.W., GUNTER, W.D., 1973. The stability of talc. American Mineralogist, 58: 64-72.
  • BRIGATTI, M.F., GALAN, E., THENG, B.K.G., 2006. Structures and mineralogy of clay minerals. In: Eds. Bergaya, F., Theng, B.K.G., Lagaly, G., Handbook of Clay Science. Developments in Clay Science, Vol. 1, Amsterdam, Elsevier, pp. 19-86.
  • BRINDLEY, G.W., 1959. X-ray and electron diffraction data for sepiolite. The American Mineralogist, 44: 495-499.
  • CARMONA, J.A., RAMÍREZ, P., TRUJILLO-CAYADO, L.A., CARO, A., MUÑOZ, J., 2018. Rheological and microstructural properties of sepiolite gels. Influence of the addition of ionic surfactants. Journal of Industrial and Engineering Chemistry, 59: 1–7.
  • CERVINI-SILVA, J., RAMIREZ-APAN, M.T., KAUFHOLD, S., PALACIOS, E., GOMES-VIDALES, V., UFER, K., ANGEL, P., MONTOYA, A., 2017. Cell growth underpinned by sepiolite. Applied Clay Science, 137: 77–82.
  • ÇINAR, M., 2005. Rheologic characteristics of sepiolites’ and water based sepiolite production. Ph.D. Thesis, Istanbul Technical University, Istanbul, Turkey.
  • ÇINAR, M., CAN, M.F., SABAH, E., KARAGÜZEL, C., ÇELIK, M.S., 2009. Rheological properties of sepiolite ground in acid and alkaline media. Applied Clay Science, 42: 422-426.
  • DARDER, M., LOPEZ-BLANCO, M., ARANDA, P., AZNAR, A.J., BRAVO, J., RUIZ-HITZKY, E., 2006. Microfibrous chitosan–sepiolite nanocomposites. Chemical Materials, 18:1602–1610.
  • DUQUESNE, E., MOINS, S., ALEXANDRE, M., DUBOIS, P., 2007. How can nanohybridsenhance polyester/sepiolite nanocomposite properties. Macromolecular Chemistry and Physics, 208: 2542–2550.
  • FRANCO, F., POZO M., CECILIA, J.A., BENITEZ-GUERRERO, M., POZO, E., MARTIN RUBI, J.A., 2014. Microwave assisted acid treatment of sepiolite: The role of composition and “crystallinity”. Applied Clay Science, 102: 15-27.
  • GALAN, E., 1996. Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31: 443-453.
  • GARCÍA-LOPEZ, D., FERNÁNDEZ, J.F., MERINO, J.C., SANTARÉN, J., PASTOR, J.M., 2010. Effect of organic modification of sepiolite for PA 6 polymer/organoclay nanocomposites. Composites Science and Technology, 70: 1429–1436.
  • GERMINE, M., 1987. Sepiolite asbestos from Franklin, New Jersey: A case study in medical geology. Environmental Research, 42: 386-399.
  • GONZALEZ-PRADAS, E., SOCIAS-VICIANA, E., URENA-AMATE, M.D., CANTOS-MOLINA, A., VILLAFRANCA-SANCHEZ, M., 2005. Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites. Water Research, 39: 1849–1857.
  • GRIM, R.E., 1968. Clay Mineralogy (2nd Ed.). McGraw-Hill, New York, CO. pp. 596.
  • GÜVEN, N., 1992. Rheological aspects of aqueous smectite suspensions. Eds. Güven, N. and Pollastro, R.M., Clay-water interface and its implications. Clay Min. Soc. Workshop Lectures, The Clay Minerals Society, 4: 81-125.
  • HELMY, A.K., BUSETTI, S.G., 2008. The surface properties of sepiolite. Applied Surface Science, 255: 2920–2924.
  • HIBINO, T., TSUNASHIMA, A., YAMAZAKI, A., OTSUKA, R., 1995. Model calculation of sepiolite surface areas. Clays and Clay Minerals. 43: 391-396.
  • HU, P., YANG, H., 2013. Insight into the physicochemical aspects of kaolins with different morphologies. Applied Clay Science, 74: 58-65.
  • LIMA, J. A DE., CAMILO, F.F., FAEZ, R., CRUZ, S.A., 2017. A new approach to sepiolite dispersion by treatment with ionic liquids. Applied Clay Science, 143: 234–240.
  • LUCKHAM, P.F., ROSSI, S., 1999. The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82: 43-92.
  • MAQUEDA, C., VILLAVERDE, J., SOPEÑA, F., UNDABEYTIA, T., MORILLO, E., 2008. Novel system for reducing leaching of the herbicide metribuzin using clay−gel-based formulations. Journal of Agricultural Food Chemistry, 56 (24): 11941-11946.
  • MAQUEDA, C., PARTAL, P., VILLAVERDE, J., PEREZ-RODRIGUEZ, J.L., 2009. Characterization of sepiolite-gel-based formulations for controlled release of pesticides. Applied Clay Science, 46: 289–295.
  • NEAMAN, A. and SINGER, A., 2000. Rheological properties of aqueous suspensions of palygorskite. Soil Science Society American Journal, 64: 427-436.
  • OLIVATOA, J.B., MARINI, J., POLLET, E., YAMASHITA, F., GROSSMANN, M.V.E., AVÉROUS, L., 2015. Elaboration, morphology and properties of starch/polyesternano-biocomposites based on sepiolite clay. Carbohydrate Polymers, 118: 250–256.
  • OVARLEZ, S., GIULIERI, F., DELAMARE, F., SBIRRAZZUOLI, N., CHAZE, A.M., 2011. Indigo–sepiolite nanohybrids: Temperature-dependent synthesis of two complexes and comparison with indigo–palygorskite systems, Microporous and Mesoporous Materials, 142: 371–380.
  • PICKERING, R.A., 2014. Tri-octahedral domains and crystallinity in synthetic clays: implications for lacustrine paleoenvironmental reconstruction. Master Thesis, College of Arts and Sciences Georgia State University.
  • POZO, M., CALVO, J.P., POZO, E., MORENO, A., 2014. Genetic constraints on crystallinity, thermal behaviour and surface area of sepiolite from the cerro de los batallones deposit (Madrid basin, Spain). Applied Clay Science, 91-92: 30-45.
  • SABAH, E., 1998. Adsorption mechanism of various amines onto sepiolite. Ph.D. Thesis, Osmangazi University, Eskişehir, Turkey.
  • SANTAREN, J., 1993. Sepiolite: a mineral thickener and rheology additive. Modern Paint and Coatings. 98-72.
  • SERNA, C., VANSCOYOC, G.E. and AHLRICHS, J.L., 1977. Hydroxyl groups and water in palygorskite. American Mineralogist, 62: 784-792.
  • SERRATOSA, J.M., 1979. Surface properties of fibrous clay minerals (palygorskite and sepiolite). Proceedings of the VI International Clay Conference 1978., Oxford, Elsevier. Developments in Sedimentology. 27: 99-109.
  • SIMONTON, T.C., KOMARNENI, ROY, R. 1988. Gelling properties of sepiolite versus montmorillonite. Applied Clay Science, 3: 165-176.
  • SUAREZ, M. and GARCIA-ROMERO, E., 2012. Variability of the surface properties of sepiolite. Applied Clay Science, 67-68: 72-82.
  • TARTAGLIONE G., TABUANI D., CAMINO, G., 2008. Thermal and morphological characterization of organically modified sepiolite. Microporous and Mesoporous Materials, 107: 161-168.
  • TUNÇ, S., DUMAN, O., ÇETINKAYA, A., 2011. Electrokinetic and rheological properties of sepiolite suspensions in the presence of hexadecyltrimethylammonium bromide. Colloids and Surfaces A: Physicochemical Engineering Aspects, 377: 123-129.
  • TURKER, A.R., BAG, H., ERDOGAN, B., 1997. Determination of iron and lead by flame atomic absorption spectrometry after preconcentration with sepiolite. Fresenius Journal of Analytical Chemistry, 357: 351-353.
  • VAN OLPHEN, H., 1977. An introduction to clay colloid chemistry. 2nd ed. John Wiley and Sons, New York.
  • VERGE, P., FOUQUET, T., BARRERE, C., TONIAZZO, V., RUCH, D., BOMFIM, J.A.S., 2013. Organomodification of sepiolite clay using bio-sourced surfactants: Compatibilization and dispersion into epoxy thermosets for properties enhancement. Composites Science and Technology, 79: 126-132.
  • VICOSA, A.L., GOMES, A.C.O., SOARES, B.G., PARANHOS, C.M., 2009. Effect of sepiolite on the physical properties and swelling behavior of rifampicin-loaded nanocomposite hydrogels. Express Polymer Letters, 3: 518-524.
  • YAHIA, A., MANTELLATO, S., FLATT, R.J., 2016. Concrete Rheology: A basis for understanding chemical admixtures.Science and Technology of concrete admixtures. Eds., Aitcin, Pierre-Claude and Flatt R.J., 97-127.
  • ZHENG, Y.P., ZHANG, J.X., LAN, L., YU, P.Y., 2011. Sepiolite nanofluids with liquid-like behavior. Applied Surface Science, 257: 6171-6174.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f191cec3-65dc-42b6-8fe1-46321b484ca3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.