PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Luminescence of II–VI and III–V nanostructures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photoluminescence of HgCdTe epitaxial films and nanostructures and electroluminescence of InAs(Sb,P) light-emitting diode (LED) nanoheterostructures were studied. For HgCdTe-based structures, the presence of compositional fluctuations, which localized charge carriers, was established. A model, which described the effect of the fluctuations on the rate of the radiative recombination, the shape of luminescence spectra and the position of their peaks, was shown to describe experimental photoluminescence data quite reasonably. For InAs(Sb,P) LED nanoheterostructures, at low temperatures (4.2–100 K) stimulated emission was observed. This effect disappeared with the temperature increasing due to the resonant ‘switch-on’ of the Auger process involving transition of a hole to the spin-orbit-splitted band. Influence of other Auger processes on the emissive properties of the nanoheterostructures was also observed. Prospects of employing II–VI and III–V nanostructures in light-emitting devices operating in the mid-infrared part of the spectrum are discussed.
Słowa kluczowe
Twórcy
  • Ioffe Institute, Saint-Petersburg, 194021, Russia
  • ITMO University, Saint-Petersburg, 197101, Russia
  • Ioffe Institute, Saint-Petersburg, 194021, Russia
  • Ioffe Institute, Saint-Petersburg, 194021, Russia
  • ITMO University, Saint-Petersburg, 197101, Russia
  • Ioffe Institute, Saint-Petersburg, 194021, Russia
  • ITMO University, Saint=Petersburg, 197101, Russia
  • Ioffe Institute, Saint-Petersburg, 194021, Russia
Bibliografia
  • [1] A. Krier (Ed.), Mid-Infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol. 118, Springer, Berlin, 2006.
  • [2] C.R. Becker, V. Latussek, A. Pfeuffer-Jeschke, G. Landwehr, L.W. Molenkamp, Band structure and its temperature dependence for type-III HgTe/Hg1-xCdxTesuperlattices and their semimetal constituent, Phys. Rev. B 62 (2000)10353–10363.
  • [3] J.P. Zanatta, F. Noël, P. Ballet, N. Hdadach, A. Million, G. Destefanis, E. Mottin,C. Kopp, E. Picard, E. Hadji, HgCdTe molecular beam epitaxy material for microcavity light emitters: application to gas detection in the 2-6 μm range, J. Electron. Mater. 32 (2003) 602–607.
  • [4] C.R. Tonheim, A.S. Sudbø, E. Selvig, R. Haakenaasen, Enhancement of light emission from Hg-Cd-Te due to surface patterning, IEEE Photon. Technol. Lett.23 (2011) 36–38.
  • [5] V.I. Ivanov-Omskii, N.L. Bazhenov, K.D. Mynbaev, Effect of alloy disorder on photoluminescence in HgCdTe, Phys. Status Solidi B 246 (2009) 1858–1869.
  • [6] K.D. Mynbaev, N.L. Bazhenov, V.I. Ivanov-Omskii, N.N. Mikhailov, M.V. Yakushev, A.V. Sorochkin, S.A. Dvoretsky, V.S. Varavin, Yu. G. Sidorov, Photoluminescence of Hg1-xCdxTe based heterostructures grown by molecular–beam epitaxy, Semiconductors 45 (2011) 872–879.
  • [7] K.D. Mynbaev, N.L. Bazhenov, A.V. Shilyaev, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, V.G. Remesnik, V.S. Varavin, High–temperature photoluminescence of CdHgTe solid solutions grown by molecular–beam epitaxy, Tech. Phys. 58 (2013) 1536–1539.
  • [8] A.I. Izhnin, A.I. Izhnin, K.D. Mynbaev, N.L. Bazhenov, A.V. Shilyaev, N.N. Mikhailov, V.S. Varavin, S.A. Dvoretsky, O.I. Fitsych, A.V. Voitsekhovsky, Photoluminescence of HgCdTe nanostructures grown by molecular beam epitaxy on GaAs, Opto-Electron. Rev. 21 (2013) 390–394.
  • [9] K.D. Mynbaev, A.V. Shilyaev, N.L. Bazhenov, I.I. Izhnin, A.I. Izhnin, N.N. Mikhailov, V.S. Varavin, S.A. Dvoretsky, Acceptor states in heteroepitaxial CdHgTe films grown by molecular–beam epitaxy, Semiconductors 49 (2015) 367–372.
  • [10] J.W. Tomm, K.H. Herrmann, A.E. Yunovich, Infrared photoluminescence in narrow-gap semiconductors, Phys. Status Solidi A 122 (1990) 11–42.
  • [11] F. Fuchs, P. Koidl, Carrier localization in low-bandgap Hg1-xCdxTe crystals, studied by photoluminescence, Semicond. Sci. Technol. 6 (1991) C71–C75.
  • [12] A. Lusson, F. Fuchs, Y. Marfaing, Systematic photoluminescence study ofCdxHg1-xTe alloys in a wide composition range, J. Cryst. Growth 101 (1990)673–677.
  • [13] P. Gille, K.H. Herrmann, N. Puhlmann, M. Schenk, J.W. Tomm, L. Werner, Eg versus x relation from photoluminescence and electron microprobe investigations in p-type Hg1-xCdxTe (0.35 ≤ x ≤ 0.7), J. Cryst. Growth 86 (1988)593–598.
  • [14] M.M. Kraus, C.R. Becker, S. Scholl, Y.S. Wu, S. Yuan, G. Landwehr, Infrared photoluminescence on molecular beam epitaxy grown Hg1-xCdxTe layers, Semicond. Sci. Technol. 8 (1993) S62–S65.
  • [15] G.B. Stringfellow, Microstructures produced during the epitaxial growth of InGaN alloys, J. Cryst. Growth 312 (2010) 735–749.
  • [16] Y. Liao, C. Kao, C. Thomidis, A. Moldawer, J. Woodward, D. Bhattarai, T.D. Moustakas, Recent progress of efficient deep UV-LEDs by plasma-assisted molecular beam epitaxy, Phys. Status Solidi C 9 (2012) 798–801.
  • [17] A.V. Shilyaev, A.A. Greshnov, N.L. Bazhenov, K.D. Mynbaev, Modeling recombination processes in solid solutions with large-scale composition fluctuations, Mater. Phys. Mech. 18 (2013) 171–178.
  • [18] S. De, A. Layek, A. Raja, A. Kadir, M.R. Gokhale, A. Bhattacharya, S. Dhar, A. Chowdhury, Two distinct origins of highly localized luminescent centers within InGaN/GaN quantum-well light-emitting diodes, Adv. Funct. Mater. 21(2011) 3828–3835.
  • [19] K.D. Mynbaev, A.V. Shilyaev, N.L. Bazhenov, A.I. Izhnin, I.I. Izhnin, A.V. Voitsekhovskii, N.N. Mikhailov, V.S. Varavin, S.A. Dvoretsky, Light emission from CdHgTe–based nanostructures, Mater. Phys. Mech. 21 (2014) 112–118.
  • [20] M. Sopanen, T. Koljonen, H. Lipsanen, T. Tuomi, Growth of GaInAsSb using tertiarybutylarsine as arsenic source, J. Cryst. Growth 145 (1994) 492–497.
  • [21] N.K. Zhumashev, K.D. Mynbaev, N.L. Bazhenov, N.D. Stoyanov, S.S. Kizhaev, T.I. Gurina, A.P. Astakhova, A.V. Tchernyaev, S.S. Molchanov, H. Lipsanen, Kh.M. Salikhov, V.E. Bougrov, Spectral characteristics of mid-infrared light-emitting diodes based on InAs(Sb,P), Sci. Technol. J. Inform. Technol. Mech. Opt. 16 (2016) 76–84.
  • [22] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (2001)5815–5875.
  • [23] E.H. Steenbergen, O.O. Cellek, D. Lubyshev, Y. Qiub, J.M. Fastenau, A.W.K. Liub, Y.-H. Zhang, Study of the valence band offsets between InAs and InAs1-xSbx alloys, Proc. SPIE 8268 (2012) 82680K.
  • [24] N. Matveev, N. Zotova, S. Il’inskaya, M. Karandashev, M. Remennyi, N. Stus’, Spontaneous and stimulated emission in InAs LEDs with cavity formed by gold anode and semiconductor/air interface, Phys. Status Solidi C 2 (2005) 927–930.
  • [25] B. Lane, M. Razeghi, High-power electrically injected mid-infrared interband lasers grown by LP-MOCVD, J. Cryst. Growth 221 (2000) 679–682.
  • [26] A.P. Astakhova, T.V. Bez’yazychnaya, L.I. Burov, A.S. Gorbatsevich, A.G. Ryabtsev, G.I. Ryabtsev, M.A. Shchemelev, Yu. P. Yakovlev, Optical parameters of diode lasers based on an InAsSb/InAsSbP heterostructures, Semiconductors 42 (2008) 228–231.
  • [27] E.A. Grebenshchikova, N.V. Zotova, S.S. Kizhaev, S.S. Molchanov, Yu.P.Yakovlev, InAs/InAsSbP light-emitting structures grown by gas-phase epitaxy,Tech. Phys. 46 (2001) 1125–1127.
  • [28] J.R. Lindle, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, G.W. Turner, H.K. Choi, Auger lifetime in InAs, InAsSb, and InAsSb-InAlAsSb quantum wells, Appl. Phys. Lett.67 (1995) 3153–3155.
  • [29] P. Adamiec, R. Bohdan, A. Bercha, F. Dybala, W. Trzeciakowski, Y. Rouillard, A. Joullié, Threshold currents under pressure in InGaAsSb/AlGaAsSb laser diodes, Phys. Status Solidi B 244 (2007) 187–191.
  • [30] K.J. Cheetham, A. Krier, I.P. Marko, A. Aldukhayel, S.J. Sweeney, Direct evidence for suppression of Auger recombination in GaInAsSbP/In As mid-infrared light-emitting diodes, Appl. Phys. Lett. 99 (2011) 141110.
  • [31] A. Rogalski, HgCdTe infrared detector material: history, status and outlook, Rep. Progr. Phys. 68 (2005) 2267–2336.
  • [32] N.L. Bazhenov, K.D. Mynbaev, V.I. Ivanov-Omski, V.A. Smirnov, V.P. Evtikhiev, N.A. Pikhtin, M.G. Rastegaeva, A.L. Stankevich, I.S. Tarasov, A.S. Shkol’nik, G.G. Zegrya, Temperature dependence of the threshold current of QW lasers, Semiconductors 39 (2005) 1210–1214.
Uwagi
EN
This article is an expanded version of a scientific report presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1915b61-cf58-4c34-92b9-12e6b26c7ac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.