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Abstract. A review of the Miller, Laue and direction indices characterization was made. Excluding or allowing non-coprime indices, depending
on whether the lattice is primitive or centred, were compared. The solution of the “spacing counting problem for centred lattices was proposed. It
was shown that for centred lattices: (1) Laue indices nh nk nl can represent not only n-th order diffraction on (hkl) planes, but also the first order
diffraction from a family of planes (nh nk nl); (2) “integral reflection conditions” are necessary, but not sufficient for the existence of given Miller
indices. “Integral reflection conditions” for Laue indices hkl and other “conditions for Miller indices” (hkl) were distinguished. It was shown
that in the case of centred lattices, the inference based on the value of n obtained from the equation of lattice planes, may not be correct. The
homogeneity of the centred reciprocal lattices has been clarified. “Simple cubic cell with a base” as a choice of unit cell proposed by “general
rule” was contrasted with: “unit cell, if not centred, must be the smallest one”. “Integral reflection conditions” for Laue indices and other, new
“conditions for Miller indices”, resulting from transformation of centred lattices to unconventional primitive ones have been proposed. Examples
of the not correct use of indices in the morphology and diffraction pattern descriptions were shown.
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1. INTRODUCTION
Although Miller indices (hkl), Laue indices hkl and direction
indices [uvw] are among the oldest and the most frequently
used terms in crystallography, in some cases they are incor-
rectly defined, characterized, and used. This concerns the de-
scription of crystals with centred lattices and most often is as-
sociated with the incorrect exclusion from this description of
the not relatively prime Miller indices. Unfortunately, such de-
scriptions also appear in the most prestigious monographs on
crystallography and solid state physics, such as Buerger [1],
Taylor [2], Klug and Alexander [3], Ashcroft and Mermin [4]
and Kittel [5] as well as in the sources of knowledge en-
dorsed by IUCr, such as International Tables for Crystallog-
raphy, IUCr Monographs (or Texts) on Crystallography (e.g.
Schmueli [6] and Giacovazzo et al. [7]), IUCr Online Dictio-
nary (for “Miller Indices” [8], and for “Reciprocal Lattices” [9])
or IUCr Teaching Pamphlets no. 4 [10], entitled “Reciprocal
Lattices”. Over a dozen studies/descriptions, concerning this
problem, contained in prestigious monographs on crystallogra-
phy and physics or chemistry of solids, were critically reviewed
in this work. Also recently published works: Nespolo [11]
and [12], Michalski [13], and the current content of the IUCr
Online Dictionary for Miller Indices [8] and Reciprocal Lat-
tices [9] were discussed and compared. Most of them do not
meet the basic property of lattice planes (families of planes)
for both centred and primitive lattices, namely – each family
of lattice planes passes through all lattice points/nodes, and
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each lattice point/ node belongs to all families of lattice planes.
Some earlier statements on this subject, allowing non-relatively
prime Miller indices, can also be found in the monographs:
Wilkes [14], Hammond [15], and Hermann [16].

2. DIFFERENT DESCRIPTIONS OF MILLER, LAUE AND
DIRECTION INDICES IN VARIOUS SOURCES, WHICH
MAY NOT BE CORRECT

2.1. Descriptions excluding non-coprime Miller indices,
for both primitive and centred lattices

In a monograph by Taylor [2, p. 27], in the paragraph entitled:
“The Law of Rational Indices”, we have: “The numbers hkl de-
fine the plane, to which the symbol in round brackets (hkl) may
be given, and are called its Miller indices, after Miller who in-
troduced them. The Miller indices are always whole numbers
having no common factor, and are, for the commonly occur-
ring faces of a crystal, small whole numbers”. On page 35, in
this monograph, in the paragraph entitled: “Miller Indices of
the Lattice Planes”, the following attempt to justify these the-
ses is given: “It will be noticed that the Miller indices have no
common factor. The planes (2h 2k 2l) for example are paral-
lel to the planes (hkl) but are half as far apart. Since all the
lattice points can be accommodated upon the planes (hkl), it
follows that every alternate plane in the series (2h 2k 2l) is void
of lattice points. In other words, all possible lattice planes can
be adequately described by a set of Miller indices that do not
have a common factor, and the same must be true of the Miller
indices of the crystal faces since here only the relative orienta-
tions of the faces are important”. However, in the case of cen-
tred lattices, this statement is not correct. The error is already in
the assumption of this proof (the penultimate sentence quoted
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above). This assumption is valid only for primitive lattices, or
in the case of centred lattices for a description related to un-
conventional primitive unit cells. In centred lattices, there are
also lattice planes that can be described only by Miller indices,
having common divisors, and there are no planes parallel with
them that can be described by the relatively prime Miller in-
dices. For example, in the cF lattice there are families of planes
(200) and (220) and there are no families of planes (100) and
(110) parallel with them, or in the lattice cI there are families
of planes (200) and (222) and there are no families of planes
(100) and (111) parallel with them. For instance, plane (222) is
closer to the origin because lattice points: (–1/2 1/2 1/2), (1/2 –
1/2 1/2), and (1/2 1/2 –1/2) as centring nodes from the neighbor
cells are closer than (100), (010) and (001) in the plane (111).
Similar theses were given by Buerger [1]. These erroneous the-
ses were repeated in many monographs and other sources. The
most important of them are, for example, the monograph: Klug
and Alexander [3, p. 16] and IUCr Teaching Pamphlets no. 4:
“The Reciprocal Lattice” by Authier [10]. However, the justifi-
cation of this thesis is possible only for primitive lattices. For
centred lattices, Miller indices would be always integer and rel-
atively prime, only for the description related to unconventional
primitive unit cells. After transforming to conventional centred
unit cells, Miller indices may take integer values, not neces-
sarily relatively prime. A detailed description and examples of
such transformations are shown in Michalski [13].

In a monograph by Taylor [2, p. 42], in the paragraph entitled
“Laue and Miller indices”, there is also an incorrect statement:
“There is an important distinction between the Laue indices hkl
which define a reflection and the Miller indices (h′k′l′), which
define a set of lattice planes or a crystal face. We showed be-
neath in Section 3 that the Miller indices never have a common
factor, yet they are sufficient to define a series of parallel lattice
planes which contain all the lattice points, and also the crys-
tal faces. On the other hand, the Laue indices hkl, which de-
fine the number of wavelengths in the path difference between
X-ray scattered at O and the lattice points A, B, C, may have
a common factor”. On page 43, we have: “We, therefore, have
the following relations between the Laue indices hkl, and the
Miller indices (h′k′l′) of the reflecting planes

h = nh′, k = nk′, l = nl′.

In other words, a reflection, which is described by the set of
Laue indices hkl, simply means that it is the n-th order reflexion
from lattice planes having the Miller indices (h′k′l′), n being the
common factor of the Laue indices”.

A similar formula is given in the current version of On-
line Dictionary of Crystallography for “Reciprocal Lattice” [9]:
“A point (node), H, of the reciprocal lattice is defined by its po-
sition vector:

OH = r∗hkl = ha∗+ kb∗+ lc∗.

If H is the n-th node on the row OH, one has:

OH = nOH1 = n(h1a∗+ k1b∗+ l1c∗) ,

where H1 is the first node on the row OH and h1, k1, l1 are
relatively prime”.

However, this formula correctly describes only primitive lat-
tices. For centred lattices, this description may be not com-
plete. A complete, correct description should take into account
the following thoughts. We should take into consideration, that
for centred lattices also some Miller indices (h′, k′, l′) or
(h1, k1, l1) of the first node of the row OH may have common
factors (e.g. n′ or n1), and may be in a form (n′h′, n′k′, n′l′) or
(n1h1, n1k1, n1l1). It results from the work by Michalski [13].
For example in cI lattice, we have (200) and (222) Miller in-
dices; in cF lattice we have (200) and (220) Miller indices, in
hR lattice we have (30 ·0)hR and (33 ·3)hR Miller indices, etc.

In the monograph by Klug and Alexander [3, p. 16], one can
find: “Miller indices containing a common factor are used by
the crystal analyst to indicate higher-order x-ray spectra from
a given crystal plane. Thus (222) represents the second-order
spectrum from the (111) plane, (333) the third-order, and so
on”. However, in the cI lattice, there are no (111) planes, but
there are (222) ones. Thus, for centred lattices, the indices con-
taining common divisors (e.g. (222) for the cI lattice) may
represent not the second order of diffraction on the family of
planes (111), but the first order of diffraction on the family of
planes (222). The description, given in the above-mentioned
book, concerning the exclusion of Miller indices containing
common divisors from the description of lattice planes (fami-
lies of planes), also for centred lattices (e.g. (222) for cI lattice),
is incorrect.

Extensive considerations to confirm the “Fundamental law
of the reciprocal lattice”: “With each node of the reciprocal lat-
tice, whose numerical coordinates have no common divider can
be associated a set of direct lattice planes”, are given in IUCr
Teaching Pamphlets, entitled: “The Reciprocal Lattice” by Au-
thier [10]. Unfortunately, these analyses apply only to the prim-
itive lattice, while the conclusions, given there, are not limited
to these lattices only. For example, on page 7 we have: “Let us
consider a set of direct lattice planes of equation:

hx+ ky+ lz =C.

Since x, y, z may be integers; h, k and l are also inte-
gers. If C = 1, corresponding to the first plane in the fam-
ily, h, k and l have no common divider”. This statement may
lead to erroneous conclusions. For example, for cF lattice;
if we substitute; x y z = 1/2 1/2 0, and Miller indices of
not existing family of lattice planes (hkl) = (110), we get
n = 1 ·1/2+1 ·1/2+0 ·0 = 1.

Similarly, in Giacovazzo et al. [7, p. 10, lines 2–6], it is
stated: “We can therefore conclude that a family of crystallo-
graphic planes is always uniquely defined by three indices h, k,
and l having the largest common integer factor equal to unity”.
Also in Koch [17, vol. C, ch. 1.1, p. 3], there is a similar state-
ment: “If the coefficients h, k, l of r∗ are coprime, the symbol
(hkl) describes that family of nets.”

However, for centred lattices, all of these statements from
prestigious sources may also be wrong. For example, in the
cF lattice there are planes with Miller indices; (111), (200),
(020), (002), (220), (202) end (022), but there are no planes
with Miller indices; (100), (010), (001), (110) and (011). Simi-
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larly, in the cI lattice there are planes with Miller indices: (110),
(101), (011), (200), (020), (002) and (222), but there are no
planes with Miller indices; (100), (010), (001) and (111).

2.2. Descriptions that allow coexisting of different, parallel
families of planes with Miller indices, both coprime
and with common divisors, regardless of whether
the lattice is primitive or centred

Such descriptions are contained for example in the mono-
graphs: Kittel [5], Cullity [18], and Pecharsky and Zavalij [19].
Kittel [5] explains the use of Miller indices having common di-
visors, without combining this with centring or not centring of
the lattice. For example, in the 8th edition of Kittel [5, p. 12,
Fig. 14], the parallel to each other lattice planes of the same
crystal is described by Miller indices (100) and (200), with-
out specifying whether it is a primitive or a centred lattice. In
Pecharsky and Zavalij [19, Fig. 1.5], is similar. However, there
are no cubic lattices in which both the (100) and (200) families
of planes coexist. In the case of primitive lattices, the choice
of planes (families of planes) with Miller indices having com-
mon divisors, e.g. (200), is an error. On the other hand, in the
case of the centred cI or cF lattices, it is a mistake to select
some planes (families of planes) with Miller indices relatively
prime, e.g. (100); and reject some planes (families of planes)
with Miller indices having common divisors, e.g. (200). There-
fore, this passage is in no way correct.

In none of the crystals, different families of lattice planes,
with the same orientation but with different spacings coexist.
The statement: “The same plane can belong to two different
families, such that the Miller indices of the first are multiples
of the indices of the second; thus the same plane belongs to
families (210) and (420) and family planes (210) make up every
second plane in a family (420)”, given in the wonderful book by
Cullity [18, p. 37], is unfortunately not correct either.

This problem was already highlighted in the book by McKie
and McKie [21]. For example, in Fig. 6.10 on page 184, in
a primitive orthorhombic lattice, the planes (210), (420), and
(630) are marked. In the commentary on page 183, we have:
“Every (210) lattice plane passes through lattice points and all
planes are equivalent. However, only alternate planes of the
(420) set pass through lattice points and all planes are equiv-
alent. Likewise, the planes (630) are not all equivalent, only
one in every three passing through lattice points.” In addition,
we continue in the comment: “The diffracted beams shown in
Fig. 6.10 would be described as the 210, 420, and 630 reflec-
tions, the indices for reflections being distinguished from those
for planes by the omission of brackets ( ).”

In conclusion, different families of lattice planes, with the
same orientation but having different spacing, do not exist in
any crystals.

2.3. Is the introduction of two different concepts: “lattice
planes” and “reflecting planes”, the best solution
for the description of the planes in centred lattices?

In Hammond [15, p. 138], we have: “However, it is very im-
portant, when using Bragg’s law, to distinguish between “lat-
tice planes” and “reflecting planes”. Except in the cases of

non-primitive cells discussed above [15, Sec. 5.3], indices for
“lattice planes” do not have common factors. However, the in-
dices for “reflecting planes” frequently do have common fac-
tors. They are sometimes called Laue indices and are usually
written without brackets”. On page 139 we can find: “Contin-
uing the above example, third–order reflections from the (111)
lattice planes can be regarded as first-order reflections from the
333 reflecting planes (only a third of which in a family pass
through lattice points). As mentioned above, these unbrack-
eted indices are sometimes called Laue indices or reflection in-
dices”.

However, it is not the best idea to distinguish between “lat-
tice planes” and “reflecting planes”. Reflections can occur only
on existing families of lattice planes. Each “reflecting plane”
must be a “lattice plane”, while “reflecting plane 333”, given
by Hammond [15, p. 139], cannot be “lattice plane” in primitive
lattices. Other examples of the incorrectness resulting from the
introduction of the term “reflecting plane” can be found as well.

This problem is better explained and illustrated (without
introducing the redundant concept of “reflecting plane”) by
Michalski [13, Fig. 1 and 2], by using transformations from
centred into primitive lattices. The “full” nodes of the recip-
rocal lattice (on right figures) are associated with the existing
lattice planes (families of lattice planes) of simple lattice. For
example: 111, 200, 220, . . . , for cF lattice; or 101, 200, 222, . . . ,
for cI lattice. Positions of reciprocal lattice points/nodes,which
are non-associated with existing families of direct lattice planes
“but can refer to reflections of higher order from the planes”
are marked by empty circles. For example, 222 for cF lattice
and 220 for cI lattice. Positions of the reciprocal lattice, which
are not compatible with the integral reflection conditions, are
not marked at all. For example, 100 and 110 for cF lattice, 100,
120, and 111 for cI lattice.

2.4. “The spacing counting problem” for centred lattices
and its solution other than proposed by Kelly and
Groves (Kelly and Knowels) [21]

In all or most of the crystallographic books and other sources,
Miller indices are limited to relatively prime integers, also for
centred lattices. As a consequence of this limitation, such Miller
indices would contain only information about the orientation of
lattice planes. However, they would not contain correct infor-
mation on spacings for centred lattices, and thus also on the
positions of the successive planes. If we put into the formula
for spacing dhkl only relatively prime Miller indices, in many
cases we will get incorrect results for centred lattices. For exam-
ple, erroneous Miller indices (100) or (120) of planes/(families
of planes) for the lattice cI would not allow obtaining cor-
rect information, because dhkl counted with such indices would
be wrong. This is what “the spacing counting problem” is all
about.

This problem was already recognized in the textbook by
Kelly and Groves [21] (also newer edition; Kelly and Know-
els [21, edition 2021]. However, the solution proposed there
[21, Appendix A3.1.], i.e. the introduction to the formula for
dhkl , for the centred lattices, arbitrary factors depending on the
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Miller indices of the families of planes (hkl) and the type of
centring of the lattice, is not the best one. Contrary to it, cor-
rect description of planes/families of lattice planes with Miller
indices not limited to relatively prime integers allows us to cor-
rectly calculate the spacings dhkl and provides the locations of
all n-th planes of such families, without using arbitrary factors.

In other studies on this subject, we can also find incor-
rectness. For example in Maurice Van Meerssche and Janine
Feneau-Dupont [22, ch. 3.1.3.6.A], stated that there is a com-
parison of lattice plane spacings for a different type of lattice
centring:

“cP(100)> (110)> (111)> (210)> (211) . . .

cI(110)> (100)> (211)> (310)> (111) . . .

cF(111)> (100)> (110)> (311)> (331) . . .”,

although in the centred cI lattice, lattice planes (100) and (111)
do not exist, and in the centred cF lattice, lattice planes (100)
and (110) do not exist. These are not incidental cases. Many
more such examples can be given. It confirms the conclusion
that the existing sources still lack a correct and complete de-
scription of this topic.

I hope this work will contribute to a better understanding
and description of the crystal structure lattice, which in current
sources contains some words demanding changes or clarifica-
tions.

2.5. What information do Miller indices contain?
In Nespolo [11, ch. 3], a conclusion from the limitations of
Miller indices to coprime values was preserved and written
in the following characteristics: “The Miller indices do not
give the position of any of the lattice planes of a family”. In
fact, without using the correct Miller indices, it is very diffi-
cult (or even impossible) to determine correctly the orientation
and spacing and as a consequence; the positions (locations) of
a given n-th plane (family of planes) of the lattice, understood as
the orientation and distance from the origin of the system. This
was described in the previous section. Therefore, if we want
the description of this problem to be correct and complete, the
statement cited above should be replaced with the almost exact
opposite, i.e. “for known parameters of lattice, Miller indices
contain (give), information on both the orientation and the spac-
ing, i.e. also about the positions of all n-th planes of the family”.
Such a description would be consistent with Bragg [23]. It was
already pointed out by Warren [24, p. 16]: “Two properties of
a set of hkl planes are involved in using the Bragg law: the ori-
entation of the planes and their spacing”.

2.6. Which indices can be used to describe the lattice
planes and crystal morphology and which to describe
diffraction reflections, and how do they differ?

Miller indices are used for the description of lattice planes and
morphology of crystals (only full circles in Michalski [13, Figs.
1 and 2 right]). Laue indices are used in the description of
diffraction patterns/reflections (full or empty circles in Michal-
ski [13]). Unfortunately, this condition is not always fulfilled

in currently published works. For example, the descriptions of
Zhang et. al. [25] are inconsistent with these rules of correct
use of Miller or Laue indices in various cases.

In the publication by Zhang et. al. [25], the following desig-
nations for the indices in LiNa5Mo9O30 (LNMO) crystals with
cF centred lattice can be found among others: in the abstract,
there is a “(001) reflection”, on page 4484 there are “(001) ori-
ented wafers” and “(010) crystal wafer”. For descriptions of the
morphology of these crystals, we have on page 4485 “(040),
(022), (111), and (242) faces”, on page 4488 “(040), (004)”,
and “(100) and (010) faces”, and in Fig. 2 “(001) wafer”.

Also in Hahn and Klapper [26] in International Tables for
Crystallography (2006) vol D, Ch. 3.3, entitled: “Twinning of
crystals”, pp. 393–448, such irregularities are often encoun-
tered. For example, on page 407, Fig. 3.3.6.6, in descriptions
of the morphology of twinning in spinel crystals (with cF lat-
tice), Miller indices of not existing lattice planes (100) are often
used instead of (200).

3. DO THE LAUE INDICES nh nk nl ALWAYS REPRESENT
THE n-th ORDER DIFFRACTION FROM A FAMILY
OF PLANES (hkl)? CAN THEY ALSO REPRESENT
THE FIRST ORDER DIFFRACTION FROM A FAMILY
(nh nk nl) FOR CENTRED LATTICES?

3.1. The statement of Nespolo [11]
In Nespolo [11, Sec. 4], there is a paragraph: “The expression
diffraction from the plane (nh nk nl)”, which occurs more often
than one might imagine, is at odds with both the definition of
Miller indices and Bragg’s law. In fact, if the Miller indices of
a family of planes are (hkl), not necessarily coprime integers (as
we have seen above), they represent a family whose first plane
after the origin of the axes has intercepts a/h, b/k, c/l. A hypo-
thetical family (nh nk nl) would have the same orientation but
its first plane would have intercepts a/nh, b/nk, c/nl, which do
not pass through any lattice node. In other words, the hypothet-
ical family (nh nk nl) would include n−1 planes out of n which
are not reticular planes (do not pass through any lattice node).
On the contrary, if these were reticular planes, then (hkl) would
not be a family of lattice planes, because it would be composed
of only 1/n of the planes with the same orientation. Therefore,
the Laue indices nh nk nl do not represent the first-order diffrac-
tion from a family (nh nk nl) but the n-th order diffraction from
the family (hkl)”.

However, this paragraph always correctly describes diffrac-
tion only in primitive lattices. For centred lattices, this descrip-
tion may be either incorrect or ambiguous. In centred lattices,
there are also some planes with Miller indices having common
divisors, i.e. of the form (nh nk nl), and there are no planes par-
allel with them, with relatively prime Miller indices. For exam-
ple, in the cI lattice, there are (200) and (222) planes (families
of planes); but there are no (100) and (111) ones. In the cF lat-
tice, there are (200) and (220) planes (families of planes), but
there are no (100) and (110) ones. This was proved by Michal-
ski [13]. Therefore, the expression “diffraction from the plane
(nh nk nl)” may be correct in the description of centred lat-
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tices. In turn, the last sentence from Ch. 4 of Nespolo [11],
quoted above, is always correct only for primitive lattices. For
centred lattices, it may be not correct, which was proved in
Michalski [13]. The statements exactly opposite, as given by
Nespolo [11] may be correct for centred lattices. This is partic-
ularly true for the first and last sequences of the cited paragraph.
In particular, the last conclusion: “the Laue Indices nh nk nl do
not represent the first-order diffraction from a family (nh nk nl),
but n-th order diffraction from the family (hkl)”, given in Ch. 4
of Nespolo [11], may be not correct or not unequivocal for cen-
tred lattices. For example, for cI lattice, Laue indices: 200, 020,
002, 222, . . . , represent the first-order diffraction from fami-
lies of lattice planes: (200), (020), (002), (222), . . . , and do not
represent the second-order diffraction from families of planes:
(100), (010), (001), (111), . . . Similarly for cF lattice, Laue in-
dices: 200, 020, 002, 220, 022, 202, . . . , represent the first-order
diffraction from families of lattice planes: (200), (020), (002),
(220), (022), (202), . . . Similarly, Laue indices: 30 · 0 or 33 · 3,
for hR lattice, represent the first-order diffraction from families
of lattice planes: (30 ·0) or (33 ·3), etc.

3.2. Does the number n in the equation of the family
of lattice planes, always tell us whether or not, and
which plane of the family, after the origin of the axis
system, passes through a given lattice node xyz?

In Nespolo [11], when discussing centred lattices (with not rel-
atively prime Miller indices), it is also proposed to use the equa-
tion of the family of planes; hx+ ky+ lz = n for analytical de-
termination: (1) whether there is a family of lattice planes (hkl)
passing through a lattice node with coordinates xyz; (2) which
of the planes of the family (hkl), counted from the origin of the
axis system, passes through a given node.

In Ch. 3 of the above-mentioned publication, we can read:
“In particular, it should give the first plane of the family after the
origin, in the positive direction, when n = 1”. However, as was
shown in the examples in Michalski [13], the criterion proposed
by Nespolo [11] does not always provide correct solutions. This
criticism applies to the resolution in the cases when the plane to
be settled is not a lattice plane. For example, for the cF lattice,
if we substitute; x y z = 1/2 1/2 0, and Miller indices of not
existing family of lattice planes (hkl) = (110), we obtain n =
1 ·1/2+1 ·1/2+0 ·0 = 1.

According to Nespolo [11], this result determines, firstly,
that in the cF lattice, there is a family of lattice planes (110),
and secondly, that the first plane of this family passes through
the node xyz = 1/2 1/2 0. Similarly, if we substitute xyz =
1/2 1/2 1/2 and hkl = 220, for the equation of the family
of lattice planes for the cI lattice, we obtain the result: n =
2 ·1/2+2 ·1/2+0 ·1/2= 2, which determines that in the cI lat-
tice, there is a family of planes (220) and that the second plane
of this family goes through the node xyz = 1/2 1/2 0. However,
the cited statements from Nespolo [11] cannot be regarded as
a criterion for the existence of a given lattice plane (hkl) in cen-
tred lattices and as giving information on which of the planes of
this family, after the origin of the axis system, passes through
given node xyz.

3.3. Is the conclusion: “the Laue indices nh nk nl do not
represent the first-order diffraction from a family
(nh nk nl) but the n-th order diffraction from the family
(hkl)” always correct?

At the end of Ch. 4 of Nespolo [11], there is also a conclu-
sion: “Therefore, the Laue indices nh nk nl do not represent the
first-order diffraction from a family (nh nk nl) but the n-th or-
der diffraction from the family (hkl)”. However, this statement
can be both correct or incorrect, depending on the type of lat-
tice centring and the indices selected. For example, for a cF
lattice, Laue indices 220 represent the first order diffraction on
existing planes with Miller indices (220), other than that con-
cluded by Nespolo (2015). Whereas, for the cI lattice, the Laue
indices 220 do not represent the first order diffraction on planes
(220), because these planes do not exist in the cI lattice (Michal-
ski [13], Fig. 2)) but the second order of diffraction on existing
planes with Miller indices (110). Therefore, if we correctly de-
scribe the existing planes (family of lattice planes) in centred
lattices, by the manner given in Michalski [13], e.g. not (220)
but (110) for the cI lattice, then the Laue indices 220 can rep-
resent not a first order of diffraction from the planes (220), but
the second order of diffraction from the plane (110).

3.4. Criterion for the existence of lattice planes with given
Miller indices, based on transformations from
a conventional centred to an unconventional
primitive unit cell

The original, correct criterion for the existence of families of
lattice planes with given Miller indices (hkl) in centred lattices
is given in Michalski [13]. It is based on transformations of the
indices, from a conventional centred unit cell to an unconven-
tional primitive one. If, after the transformation, the examined
indices are integer and relatively prime, they describe Miller
indices and these Laue indices which equal Miller indices (full
circles in [13, Figs. 1 and 2, right-hand side]), regardless of
whether they are relatively prime in relation to the centred lat-
tice. If after this transformation they are still integers but not
relatively prime, then they do not describe Miller indices, but
only Laue indices, equal to multiples of Miller indices (empty
circles in the pictures on the right). If after transformation they
will not be integers, they can describe neither Miller indices
nor any other Laue indices, and consequently, no nodes of the
reciprocal lattice (no circles in the pictures on the right).

In primitive lattices, there are all those and only those lattice
planes (families of lattice planes) which have

integer, relatively prime Miller indices. However, there are
no lattice planes (families of lattice planes) with Miller indices
that do not fulfill this condition. Some planes of such fami-
lies (e.g. every second plane of the non-existent family (200))
would not contain any lattice nodes. In centred lattices, some
lattice planes (families of lattice planes) that exist in primitive
lattices disappear, as a result of the addition of centring nodes,
and others arise instead. For example, in the cI lattice, as a re-
sult of centring nodes with coordinates 1/2, 1/2, 1/2, the family
of lattice planes (100) disappears because it would not contain
centring nodes, i.e. half of the lattice nodes. Instead, a family of
lattice planes (200) appears with the same orientation but half
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the spacing. This fact is confirmed experimentally by the “inte-
gral reflection conditions” observed in diffraction experiments.

3.5. “Integral reflection conditions” for Laue indices and
other, new “conditions for Miller indices” resulting
from the transformation of centred lattices into
unconventional primitive ones

In the current edition of the IUCr Online Dictionary [8], the
property of satisfying “integral reflection conditions” is advis-
able as a criterion for the existence of given “Miller indices”:
“When a centred unit cell is used in direct space, “integral re-
flection conditions” are observed in the reciprocal space which
corresponds to the non-relatively prime Miller indices of the
family of lattice planes”. However, this condition is necessary
but not sufficient for Miller indices. This property is common
for all Laue indices and does not allow us to distinguish Laue
indices equal to Miller indices (e.g. 220 for cF lattice), from
other Laue indices not equal to Miller indices but to the mul-
tiplicity of Miller indices (e.g. 220 for cI lattice), which can
lead to ambiguity. For example, for the cI lattice, both the in-
dices 200 and 220 satisfy the “integral reflection conditions”:
an even sum (full or empty circles on Fig. 2 in Michalski [13]).
However, only one of them, namely 200, correctly describes
Miller indices. Indices 220 cannot be Miller indices, although
they also fulfill “integral reflection conditions”: an even sum for
the cI lattice. Indices 220 can be only Laue indices.

“Integral reflection conditions” provide a “complete crite-
rion” for the existence of reflections described by Laue indices
in centred lattices, but do not constitute such a “complete cri-
terion” for Miller indices of lattice planes. For example, Laue
indices 220 exist, but Miller indices (220) do not exist in the cI
lattice. The counterpart of the “integral reflection conditions”
used for the Laue indices are “conclusions from the transforma-
tion from a conventional, centred to an unconventional, prim-
itive lattice” for the Miller indices. If values obtained after
such transformations are integer relatively prime, they describe
Miller indices (and Laue indices equal Miller indices), marked
with full circles in Figs. 1 and 2 in Michalski [13]. If values ob-
tained after such transformations are integer but not relatively
prime, they describe Laue indices not equal to Miller indices
but to the multiplicity of Miller indices. This is the case for the
220 Laue indices in cI lattice.

3.6. Which choice of the unit cell is correct: “simple cubic
cell with a base”, defined by “general rule” in Ashcroft
and Mermin [4] or “unit cell, if not centred, must be the
smallest one”; the one based on the transformation
into an unconventional primitive unit cell?

In the book by Ashcroft and Mermin [4, p. 91], there is a state-
ment: “The Miller indices of a lattice plane are the coordinates
of the shortest reciprocal lattice vector normal to that plane,
with respect to the specified set of primitive reciprocal lattice
vectors”. However, along with this correct statement, there are
also other incorrect ones: “Since the normal to the plane is spec-
ified by the shortest perpendicular reciprocal lattice vector, the
integers h, k, l can have no common factor” and “As a general
rule, face-centred and body-centred cubic Bravais lattices are

described in terms of a conventional cubic cell i.e. as simple cu-
bic lattices with bases”. They are given to justify the exclusion
of Miller indices containing common divisors, also for centred
lattices.

But they are not correct. Unit cell, if not centred, must be the
smallest one. While the unit cells defined in this book by the
“general rule”, i.e. “as simple cubic lattices with bases”, are not
the smallest, neither for fcc nor bcc lattices. In this case, a cor-
rectly chosen primitive unit cell is not “cubic” neither for a cF-
centred nor cI-centred simple lattice. This is shown in Michal-
ski [13, Fig. 3].

3.7. Are “integral reflection conditions” sufficient to
decide about the existence of different lattice planes
with given values of the Miller indices in centred
lattices?

The first nodes (and corresponding vectors) of the reciprocal
lattice in the directions perpendicular to direct lattice planes
are associated with the families of lattice planes. In the X-ray
(or electron) diffraction pattern, they correspond to first-order
Bragg reflections. First-order Bragg reflections are described by
Laue indices, equal to Miller indices. After the transformation
into an unconventional, primitive unit cell, these indices must
be relatively prime integers (Michalski [13]).

Higher-order Bragg reflections are described by Laue indices
equal to multiples of Miller indices. After transformation into
an unconventional primitive unit cell, they take integer but not
relativelly prime values. There are no reflections (as well as
nodes of the reciprocal lattice) and the associated families of
planes, whose indices, after the transformation into an uncon-
ventional, primitive unit cell, take fractional values (Michal-
ski [13]). Both the first order Bragg reflections (described by
Laue indices equal to Miller indices) and higher order Bragg re-
flections (described by Laue indices equal to multiples of Miller
indices) fulfill the “integral reflection conditions”.

In the current edition of the IUCr Online Dictionary for
“Miller indices” [8], the property of satisfying “integral reflec-
tion conditions” is used as a criterion for the existence of Miller
indices: “When a centred unit cell is used in direct space, inte-
gral reflection conditions are observed in the reciprocal space
which corresponds to the non-relatively prime Miller indices of
the family of lattice planes”.

However, “integral reflection conditions” are necessary and
sufficient only for Laue indices. For Miller indices, these con-
ditions are necessary but not sufficient. Only the smallest val-
ues among these fulfilling “integral reflection conditions” (for
example “not mixed parity” for the cF lattice, or “even sum”
for the cI lattice) can be Miller indices. Integral reflection con-
ditions are common for all Laue indices and do not allow us
to distinguish Laue indices equal to Miller indices (e.g. 220 for
the cF lattice) from other Laue indices, not equal to Miller in-
dices but to the multiplicity of Miller indices (e.g. 220 for the
cI lattice), which can lead to ambiguity. For example, for the
cI lattice, both the indices 200 and 220 satisfy the “integral re-
flection conditions” – an even sum. However, only one of these
symbols, i.e. (200), correctly describes Miller indices. Indices
(220) cannot be Miller indices for the cI lattice, although they
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fulfill “integral reflection conditions” – an even sum. Similarly,
for the cF lattice, indices (222) cannot be Miller indices, al-
though they fulfill “integral reflection conditions” – not mixed
parity.

“Integral reflection conditions” are necessary but not suffi-
cient conditions for the existence of specific values of Miller
indices. Additionally, Miller indices must be the smallest val-
ues among these, fulfilling the “integral reflection conditions”.
For example, Miller indices cannot be (220) but (110), for the cI
lattice, and not (222) but (111) for the cF lattice. This way it is
suggested that the text in the IUCr Online Dictionary (for Miller
indices) [8] should be improved to be more precise. Moreover,
perhaps it would be useful to introduce also other, new separate
“lattice plane indices conditions” for Miller indices, similarly
to “integral reflection conditions” for Laue indices.

3.8. Clarifying the description of the homogeneity of the
lattices, reciprocal to the centred ones

One review of the manuscript of the earlier version of the paper
by Michalski [13] numbered gj5162, from a very prestigious
scientific journal, concludes with an exclamation mark: “The
manuscript contains other inconsistencies: lattice node 222 in-
dicated as “non-existent” (Fig. 1, right) whereas 111 is “ex-
isting”, which would break the condition of homogeneity of
the lattice, making it no longer a lattice!” However, in Fig. 1
(right), there is no mistake. The empty circle in Fig.1 means
only that the point (node) of the reciprocal lattice, marked with
integer coordinates, e.g. 222, is not associated with any fam-
ily of lattice planes of a direct lattice. There is no family of
lattice planes with Miller indices (222) in the cF lattice. How-
ever, there is a reciprocal lattice point (node), with Laue in-
dices 222, associated with the second order of diffraction on
the family of lattice planes (111). The reciprocal lattice consists
of points/nodes associated with all existing orders of diffrac-
tion on the existing families of lattice planes. These points are
marked with circles, full or empty. For first-order diffraction,
they are described by Laue indices equal to Miller indices and
marked with full circles. They may be relatively prime or not.
For higher-order diffraction. they are described by Laue indices
with an equal multiplicity of Miller indices and marked with
empty circles. The complete reciprocal lattices are created not
only by the nodes (reciprocal lattice points) associated with the
families of direct lattice planes, which are described by Laue in-
dices equal to Miller indices but also by nodes associated with
higher diffraction orders described by Laue indices equal to the
multiplicity of Miller indices. The homogeneity of the centred
reciprocal lattice is thus preserved.

3.9. Comments on the current description of “Reciprocal
lattice” in IUCr Online Dictionary [9]

In the first paragraph titled “Definition”, we have: “If H is the
n-th node on the row OH, one has:

OH = nOH1 = n(h1a∗+ k1b∗+ l1c∗) ,

where H1 is the first node on the row OH and h1, k1, l1 are
relatively prime.”

However, for centred lattices, the cited statement may be not
correct. For centred lattices, planes with some not relatively
prime Miller indices h1, k1, l1 may exist, and planes with some
relatively prime indices may not exist. For example in the cF
lattice, planes with not relatively prime indices: 200, 002, 020,
220, 022, 202, . . . , exist, while planes with relatively prime in-
dices: 100, 001, 010, 110, 011, 101, . . . , and 120 do not exist.
Similarly, for the cI lattice, planes with not relatively prime in-
dices: 200, 002, 020, 222, . . . , exist, while planes with relatively
prime indices: 100, 001, 010, 111, 110, 101, . . . , and 120 do not
exist. This was proved and illustrated in Michalski [13, Figs. 1
and 2].

Therefore, the description of “Reciprocal lattice” in IUCr
Online Dictionary also should be corrected. I suggest adding the
following supplement: “For centred lattices, this condition does
not have to be met, which has been proved in Michalski [13]”,
in the first paragraph, after such a cited statement: “. . . where
H1 is the first node on the row OH and h1, k1, l1 are relatively
prime”.

3.10. The new proposal of Nespolo [12] to use also
fractional direction indices [uvw] for centred lattices

In Nespolo [12] it was proposed to use fractional direction in-
dices [uvw], similar to Miller indices where common divisors
are used, for centred lattices. He also used the transformation
from an unconventional primitive to a conventional centred lat-
tice to justify this proposal. However, this elaboration identifies
the properties of the direction indices [uvw] with the properties
of the x, y, z coordinates of the first node of the direct lattice in
this direction. While these are two different quantities, direction
indices define only a unit vector in a given direction. They do
not contain any information about the distance between nodes
in that direction. There are other quantities informing us about
the distances between nodes along a given direction, to which
Nespolo’s considerations refer [12]. These are, for example, the
x, y and z coordinates of the position vector of the first node
in a given direction of the straight lattice. For centred lattices,
these can be fractional, e.g. equal to x/n, y/n, z/n.

A description of a similar situation can be found in Bloss [27,
p. 57]: “We note that [110] and [220], for example, represent the
same line; however, [110] is the preferred symbol because it
contains no common factors”. The same justification can be ap-
plied to [110] and [1/2 1/2 0] for centred lattices. These symbols
represent the same line with the same unit vector:~ruvw/|~ruvw|.
The directions described by the indices [uvw] and [u/n v/n w/n]
(e.g. [110] and [1/2 1/2 0]) would be no different.

4. OTHER EXAMPLES OF INCORRECT DESCRIPTIONS
OF CENTRED LATTICES

• In Schwarzenbach [28, p. 15], there are brilliant and sim-
ple descriptions: “A plane which passes through three (not
collinear – my insert) lattice points (and hence through an in-
finite number of lattice points) is a lattice plane”, and “Each
lattice point is found on one of the planes of the family”. In
a shorter form, it can be expressed: “each family of lattice
planes passes through all lattice points/nodes, and each lat-
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tice point/node belongs to all families of lattice planes”. In
primitive lattices, the necessary and sufficient conditions to
meet this requirement are relatively prime Miller indices. For
centred lattices, it is required that these indices be relatively
prime after transforming them to primitive lattices. A de-
tailed description with examples is given in Michalski [13].
For centred lattices these statements may not be correct.
• In ITCr, vol A, Hahn Ed. by Arnold [29, Ch. 5.1, p. 79],

we have: “Usually the Miller indices are made relative prime
before and after the transformation.” In Koch [16, vol C, Ch.
1.1.2, p. 3], we can find the statement: “Each vector r∗ is
perpendicular to a family of equidistant parallel nets within
a corresponding direct point lattice. If the coefficients h, k, l
of r∗ are coprime, the symbol (hkl) describes that family of
nets.” However, this statement may be incorrect for centred
lattices. For example, for cF centred lattice, the planes with
coprime symbols; (100) and (110) do not exist, but with non-
coprime symbols; (200) and (220) exist. It was proved by
Michalski [13].
• In the IUCr Teaching Pamphlets titled: “The Reciprocal Lat-

tice”; by Authier [10, p. 3], we can find: “with each node of
the reciprocal lattice, whose numerical coordinates have no
common divider, a set of direct lattice planes can be asso-
ciated”, which may not be correct, e.g. for the cI lattice as
there are no (111) or (120) lattice planes for it. In [10, p. 7],
we have: “(c) The reciprocal law: a reciprocal lattice vector
corresponds to each set of direct lattice planes.
Let us consider a set of direct lattice planes of equation:
hx+ ky+ lz = C. Since x, y, z may be integers, h, k and l
are also integers. If C = 1 corresponding to the first plane
in the family, h, k and l have no common divider”. The last
two statements, cited above, may not be correct, e.g. for the
cF lattice, xyz equal 1/2 0 1/2 and (hkl) equal (220), we ob-
tain C = 1. If (hkl) had no common divider, i.e. was equal to
(110), we would obtain a meaningless result C = 1/2.
• In the current edition of IUCr Online Dictionary for “Recip-

rocal lattice” [9], under the heading “Definition”, an impre-
cise statement can be found: “The reciprocal lattice is con-
stituted of the set of all possible linear combinations of the
basis vectors a∗, b∗, c∗ of the reciprocal lattice.
A point (node), H, of the reciprocal lattice is defined by its

position vector:

OH = r∗hkl = ha∗+ kb∗+ lc∗.

If H is the n-th node on the row OH, one has:

OH = nOH1 = n(h1a∗+ k1b∗+ l1c∗) ,

where H1 is the first node on the row OH and h1, k1, l1 are
relatively prime”. The last sentence may not be correct for cen-
tred lattices. For example, for the cF lattice, correct values of
h1, k1 and l1 equal 220 are not relatively prime, whereas rela-
tively prime values 110 would be not correct. Similarly, for the
cI lattice, correct values of h1, k1, l1 equal to 200 are not rela-
tively prime, whereas relatively prime values of 100 would be
not correct.

• In Shmueli [6, p. 10], we have: “The (200) plane intercepts
the X axis at a/2 and is also parallel to the Y and Z axes.
However, it does not pass through any lattice point. We would
find the same result for the (222) plane and, in general, for
any plane (hkl) (with n = 1) for which the indices h, k, and
l are not relatively prime. The above argument serves the
purpose of an illustration but does not provide a rigorous
proof that the indices h,k, and l represent a family of lattice
planes if and only if h, k, and l are relatively prime integers.
Such a proof, employing number-theoretical arguments, can
be found in the article by Deas and Hamill [30], but is out-
side the scope of our treatment”. However, nowhere, also in:
Deas and Hamill [30], there is evidence for centred lattices
because there is no such thing.

• In Snyder, Fiala and Bunge [31, p. 130], we have: “Miller
indices of the reflection”. However, Miller indices correctly
describe only lattice planes and morphology of crystals,
whereas diffraction reflections are described by Laue indices.
Only for first-order diffraction, Laue indices can be equal to
Miller indices. Therefore, in order for the cited statement to
be correct, it should be changed to: “Miller indices (hkl) of
lattice planes”, and “reflections described by Laue indices
hkl”. First orders of diffraction are described by Laue indices
equal to Miller indices of families of lattice planes, while suc-
cessive orders of diffraction, are described with Laue indices,
equal to multiples of the Miller indices.

• Dinnebier and Billinge [32, p. 10], say: “By definition, h, k,
and l are divided by their largest common integer to be Miller
indices”. For centred lattices, this “definition” may be wrong.
For example, Miller indices (200) and (220) in fcc and (200)
and (222) in bcc are correct, whereas (100) and (110) in fcc
and (100) and (111) in bcc lattices are wrong.

• In Clearfield, Reibenspies and Bhuvanesh [33, p. 86], we
have for centred lattices: “It may seem curious that the (100)
planes have now become part of the (200) stack; however, we
see that what is important in X-ray diffraction is the spacing
between planes. Thus, for the Miller indices (100) we mean
that the plane is at a distance a from the origin of the axial
system and all those at intervals of a from it to infinity. For
(200) the interval is a/2, and so on.” However, the possibility
of coexistence of different parallel planes in centred lattice,
without common divisors and containing common divisors
should be excluded.

• In Ziman [34, p. 9], it is said that: “(i) each vector of the
reciprocal lattice is normal to a set of lattice planes of the
direct lattice”; and in [34, p. 10]: “(ii) If the components of
g have no common factor, then |g| is inversely proportional
to the spacing of the lattice planes normal to g,” and in [34,
p. 11]: “(iii) These integers after the removal of any common
factors are the Miller Indices of the plane, expressed in the
form (n1, n2, n3).”

• In Bloss [27, p. 51], it can be read: “Miller indices con-
tain neither fractions nor a common factor. For example, the
Miller indices (226) would be divided through by its com-
mon factor 2 to become (113)”. However, for centred lattices,
this statement may not be correct. For the cI lattice, there are
no planes described by Miller indices whose sum is odd, for
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example,(111), (113), (115). There are, however, planes de-
scribed by Miller indices, whose sum is even, for example,
(110), (112), (200), (222), (114), etc. It results from the trans-
formation from the primitive to the centred cI lattice and is
illustrated in [27, Fig. 2]. For example, for cI lattices, there
are no planes described by Miller indices (113).
• In Zachariasen [35, p. 4], , we have: “It may, of course, be as-

sumed that the three Miller indices have no common, integral
factor.” In Bouman [36, p. 5], we have: “h, k, l are integers
without a common factor”. These statements can be both true
or incorrect, depending on what lattice (primitive or centred,
and how centred) and what indices it refers to. Therefore, it
can be considered that it does not contain any information
which can be verified.
• In Schwartz and Cohen [37, p. 47], we have: “By remov-

ing common factors in the intercepts, we lose the distinc-
tion between the plane chosen and all planes parallel to it in
the crystal”. In [37, p. 49], we have: “In considering internal
symmetry and structure we are not interested in the size of
the plane at all, whether we look at it on a crystal or in the
structure. What we are generally interested in is the kind of
plane. In removing the common factor in the Miller indices,
we are also eliminating this spurious information.” Also, this
information is not precise enough.
• These are not incidental cases. Many more such examples

can be given. It confirms the conclusion that the existing
sources still lack a correct and complete description of this
topic.
I hope this work will contribute to a better understanding and

description of the crystal structure lattice, which also in current
sources contains formulations demanding changes or clarifica-
tions.

5. CONCLUSIONS
The work concerns the basic crystallographic concepts (Miller
indices, Laue indices, and direction indices) which are used, in
most books (and other sources of crystallographic knowledge).
Unfortunately for centred lattices, they are often used or de-
fined incorrectly. This work shows examples of incorrectness
and proposes what their correct form should be.

5.1. The most important, original conclusions of this work
include among others:

1. The precise distinction between two separate concepts:
Miller indices for lattice planes (families of lattice planes),
and Laue indices for Bragg reflections (or reciprocal lattice
nodes) and the new formulation of separate criteria for the
existence of specific values of these indices in the centred
lattices.

2. Clarification of the criteria for the existence of specific val-
ues of these indices, based on: “integral reflection condi-
tions” for Laue indices, and “other conditions, resulting
from the transformation of centred lattices to unconven-
tional primitive ones”, named: “lattice plane indices con-
ditions” for Miller indices.

3. Formulation of “the spacing counting problem”, the prob-
lem related to incorrect characteristics of Miller indices for
centred lattices; and its new, original solution, other than
proposed by Kelly and Groves [21].

4. Clarification of the concept: homogeneity of lattices, recip-
rocal to centred lattices.

5. Justification that the statement: “As a general rule, face-
centred and body-centred cubic Bravais lattices are de-
scribed in terms of a conventional cubic cell, i.e. as sim-
ple cubic lattices with bases”, by Ashcroft and Mermin [4],
is not correct, and the statement: “Unit cell, if not centred,
must be the smallest one”, is correct, instead.

6. Substantiation that the statement given in Nespolo [11, Sec.
2.4]: “Therefore, the Laue indices nh nk nl do not represent
the first-order diffraction from a family (nh nk nl) but the
n-th order diffraction from the family (hkl)”, may not be
valid for centred lattices. For example, the Laue indices 220
for cF lattice, do not represent the second-order diffraction
from a family (110), but the first-order diffraction from the
family (220). Family (110) do not exist for this lattice.

7. The justification that, using the n value from the equation
of the family of lattice planes to determine whether a given
family of lattice planes (hkl) exists and which of the planes
of this family (counting from the origin of axis) passes
through a specific node xyz, proposed by Nespolo [11], may
not be correct for centred lattices.

8. The justification that, for centred lattices, “Integral reflec-
tion conditions” are necessary but not sufficient conditions
for the existence of specific values of Miller indices. Miller
indices must be the smallest values among these, fulfilling
the “integral reflection conditions”.

5.2. I hope that:
1. This work will help crystallographers, material scientists,

solid state chemists, and physicists, (also students), to avoid
the stress and mistakes or imprecision, they now have to ex-
perience in describing the structure of crystals with centred
lattice, attempting to do so correctly and according to the
knowledge, which is currently given in existing sources.

2. Mistakes or imprecision indicated and described in this
work will be corrected and popularized to avoid this type
of error in subsequent editions of the described sources.
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