PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Working Conditions on Parameters of Thermoacoustic Engine with Travelling Wave

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermoacoustic converters are devices for direct conversion of acoustic energy into thermal energy in the form of temperature difference, or vice versa – for converting thermal energy into an acoustic wave. In the first case, the device is called a thermoacoustic heat pump, in the second – thermoacoustic engine. Thermoacoustic devices can use (or produce) a standing or travelling acoustic wave. This paper describes the construction and properties of a single-stage thermoacoustic engine with a travelling wave. This kind of engine works using the Stirling cycle. It uses gas as a working medium and does not contain any moving parts. The main component of the engine is a regenerator equipped with two heat exchangers. Most commonly, a porous material or a set of metal grids is used as a regenerator. An acoustic wave is created as a result of the temperature difference between a cold and a hot heat exchanger. The influence of working gas, and such parameters as static pressure and temperature at heat exchanger on the thermoacoustic properties of the engine, primarily its efficiency, was investigated. The achieved efficiency was up to 1.4% for air as the working medium, which coincides with the values obtained in other laboratories. The efficiency for argon as working gas is equal to 0.9%.
Rocznik
Strony
467--473
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab., wykr.
Twórcy
  • Faculty of Electronics, Department of Acoustics and Multimedia, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Electronics, Department of Acoustics and Multimedia, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Abduljalil A. S., Yu Z., Jaworski A. J. (2011), Design and experimental validation of looped-tube thermoacoustic engine, Journal of Thermal Science, 20: article number: 423, doi: 10.1007/s11630-011-0490-5.
  • 2. Abduljalil A. S. A. (2012), Investigation of thermoacoustic processes in a travelling-wave looped-tube thermoacoustic engine, Ph.D. Thesis, The University of Manchester.
  • 3. Ceperley P. H. (1979), A pistonless Stirling engine – the traveling wave heat engine, The Journal of the Acoustical Society of America, 66 (5): 1508-1513, doi: 10.1121/1.383505.
  • 4. de Blok K. (2010), Novel 4-stage traveling wave thermoacoustic power generator, [in:] Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, Vol. 2, Fora, pp. 73-79, Montreal, Quebec, Canada. August 1-5, 2010, doi: 10.1115/FEDSM-ICNMM2010-30527.
  • 5. de Blok K. (2012), Multi-stage traveling wave thermoacoustics in practice, [in:] 19th International Congress on Sound and Vibration, Vilnius, pp. 1573-1580.
  • 6. Dobrucki A. (2007), Electroacoustic transducers [in Polish: Przetworniki elektroakustyczne], WNT, Warszawa 2007.
  • 7. Garrett S. (2003), Cylindrical spring with integral dynamic gas seal, Patent US20030192322A1.
  • 8. Kruk B. (2013), Influence of material used for the regenerator on the properties of a thermoacoustic heat pump, Archives of Acoustics, 38 (4): 565-570, doi: 10.2478/aoa-2013-0067.
  • 9. Kruk B., Dobrucki A. (2017), Influence of design and material features of thermoacoustic devices on their efficiency [in Polish: Wpływ cech konstrukcyjnych i materiałowych urządzeń termoakustycznych na ich sprawność], Advances in Acoustics 2017, D. Bismor [Ed.], Upper Silesian Branch of the Polish Acoustical Society, pp. 509-520.
  • 10. Kruk B., Ruziewicz A. (2016), The acoustic properties of thermoacoustic devices, Advances in Acoustics 2016, M. Meissner [Ed.], Warsaw Branch of the Polish Acoustical Society, pp. 173-180.
  • 11. Rayleigh J. L. (1878), The explanation of certain acoustical phenomena, Nature, 18 (455): 319-321, doi: 10.1038/018319a0.
  • 12. Ruziewicz A., Kruse A., Gnutek Z. (2018), Thermodynamic analysis of a thermoacoustic travelling wave engine, Journal of Mechanical and Energy Engineering, 2 (1): 67-74, doi: 10.30464/jmee.2018.2.1.67.
  • 13. Ruziewicz A., Lamperski J. (2015), Analysis of energy conversion processes in a thermoacoustic device, [in Polish: Analiza procesów konwersji energii w urządzeniu termoakustycznym], Zeszyty naukowe Politechniki Rzeszowskiej 291, Mechanika 87, pp. 143-159.
  • 14. Ruziewicz A., Zimnowłodzki P. (2014), Heat exchange in thermoacoustic devices – an overview of the solutions used [in Polish: Wymiana ciepła w urządzeniach termoakustycznych – przegląd stosowanych rozwiązań], Zeszyty Energetyczne Tom I. Problemy współczesnej energetyki, pp. 31-42.
  • 15. Swift G. W. (1988), Thermoacoustic engines, Journal of the Acoustical Society of America, 84 (4): 1145-1180, doi: 10.1121/1.396617.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f18972d7-c343-41f2-ae9d-2eab5c1c4a16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.