PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid feature selection and support vector machine framework for predicting maintenance failures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as over¬sampling and feature selection for failure prediction is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For feature selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation are used in literature. They are used to measure aircraft engine sensors to predict engine failures, while the prediction algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.
Rocznik
Strony
112--124
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
autor
  • LMA, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
autor
  • LMA, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
  • LMA, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
Bibliografia
  • [1] Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability, 14(6), 3387. https://doi.org/10.3390/su14063387
  • [2] Ambarwati, Y. S., & Uyun, S. (2020). Feature selection on magelang duck egg candling image using variance threshold method. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 694-699). IEEE. http://doi.org/10.1109/isriti51436.2020.9315486
  • [3] Aremu, O. O., Cody, R. A., Hyland-Wood, D., & McAree, P. R. (2020). A relative entropy based feature selection framework for asset data in predictive maintenance. Computers & Industrial Engineering, 145, 106536. http://doi.org/10.1016/j.cie.2020.106536
  • [4] Batista, G. E., Bazzan, A. L., & Monard, M. C. (2003). Balancing training data for automated annotation of keywords: a case study (pp. 10-18). WOB.
  • [5] Bekar, E. T., Nyqvist, P., & Skoogh, A. (2020). An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study. Advances in Mechanical Engineering, 12(5), 1687814020919207. https://doi.org/10.1177/1687814020919207
  • [6] Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839. http://doi.org/10.1016/j.csda.2019.106839
  • [7] Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. http://doi.org/10.1023/A:1010933404324
  • [8] Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. http://doi.org/10.1016/j.cie.2019.106024
  • [9] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28. https://doi.org/10.1016/j.compeleceng.2013.11.024
  • [10] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. http://doi.org/10.1613/jair.953
  • [11] Elhassan, T., & Aljurf, M. (2016). Classification of imbalance data using tomek link (t-link) combined with random under-sampling (rus) as a data reduction method. Global Journal of Technology & Optimization, 1, 2016. http://doi.org/10.4172/2229-8711.S1111
  • [12] Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling method for learning from imbalanced data sets. Computational intelligence, 20(1), 18-36. https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
  • [13] Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262. https://doi.org/10.1016/j.ijinfomgt.2018.10.006
  • [14] Gohel, H. A., Upadhyay, H., Lagos, L., Cooper, K., & Sanzetenea, A. (2020). Predictive maintenance architecture development for nuclear infrastructure using machine learning. Nuclear Engineering and Technology, 52(7), 1436-1442. http://doi.org/10.1016/j.net.2019.12.029
  • [15] Granitto, P. M., Furlanello, C., Biasioli, F., & Gasperi, F. (2006). Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometrics and intelligent laboratory systems, 83(2), 83-90. http://doi.org/10.1016/j.chemolab.2006.01.007
  • [16] Hasan, M. A. M., Nasser, M., Ahmad, S., & Molla, K. I. (2016). Feature selection for intrusion detection using random forest. Journal of information security, 7(3), 129-140. http://doi.org/10.4236/jis.2016.73009
  • [17] He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE. http://doi.org/10.1109/IJCNN.2008.4633969
  • [18] Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and software Technology, 67, 108-127. https://doi.org/10.1016/j.infsof.2015.07.004
  • [19] Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision support systems, 37(4), 543-558. https://doi.org/10.1016/S0167-9236(03)00086-1
  • [20] Huljanah, M., Rustam, Z., Utama, S., & Siswantining, T. (2019, June). Feature selection using random forest classifier for predicting prostate cancer. IOP Conference Series: Materials Science and Engineering, 546(5), 052031. http://doi.org/10.1088/1757-899X/546/5/052031
  • [21] Jović, A., Brkić, K., & Bogunović, N. (2015). A review of feature selection methods with applications. In 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1200-1205). IEEE. http://doi.org/10.1109/MIPRO.2015.7160458
  • [22] Kotsiantis, S. B., & Pintelas, P. E. (2003). Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & Teleinformatics, 1(1), 46-55.
  • [23] Lai, S. T., & Leu, F. Y. (2017). Data preprocessing quality management procedure for improving big data applications efficiency and practicality. In Barolli, L., Xhafa, F., Yim, K. (Eds.) Advances on Broad-Band Wireless Computing, Communication and Applications: Proceedings of the 11th International Conference On Broad-Band Wireless Computing, Communication and Applications (BWCCA–2016) (pp. 731-738). Springer. https://doi.org/10.1007/978-3-319-49106-6_73
  • [24] Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective, Springer Science & Business Media, 453. Springer. https://doi.org/10.1007/978-1-4615-5725-8
  • [25] Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.
  • [26] Nacchia, M., Fruggiero, F., Lambiase, A., & Bruton, K. (2021). A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Applied Sciences, 11(6), 2546. http://doi.org/10.3390/app11062546
  • [27] Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision support systems, 50(2), 491-500. http://doi.org/10.1016/j.dss.2010.11.006
  • [28] Rendon, E., Alejo, R., Castorena, C., Isidro-Ortega, F. J., & Granda-Gutierrez, E. E. (2020). Data sampling methods to deal with the big data multi-class imbalance problem. Applied Sciences, 10(4), 1276. http://doi.org/10.3390/app10041276
  • [29] Singla, M., & Shukla, K. K. (2020). Robust statistics-based support vector machine and its variants: a survey. Neural Computing and Applications, 32(15), 11173-11194. http://doi.org/10.1007/s00521-019-04627-6
  • [30] Tarik, M., & Jebari, K. (2020). Maintenance Prediction by Machine Learning: Study Review of Some Supervised Learning Algorithms. Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management. Harare (pp. 2678-2686). Zimbabwe: IEOM Society International.
  • [31] Themistocleous, M., Papadaki, M., & Kamal, M. M. (Eds.). (2020). Information Systems: 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25–26, 2020, Proceedings , 402. Springer. http://doi.org/10.1007/978-3-030-63396-7
  • [32] Traini, E., Bruno, G., D’antonio, G., & Lombardi, F. (2019). Machine learning framework for predictive maintenance in milling. IFAC-PapersOnLine, 52(13), 177-182. http://doi.org/10.1016/j.ifacol.2019.11.172
  • [33] Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on neural networks, 10(5), 988-999. http://doi.org/10.1109/72.788640
  • [34] Wang, J., Li, C., Han, S., Sarkar, S., & Zhou, X. (2017). Predictive maintenance based on event-log analysis: A case study. IBM Journal of Research and Development, 61(1), 11-121. http://doi.org/10.1147/jrd.2017.2648298
  • [35] Wang, Z. H. E., Wu, C., Zheng, K., Niu, X., & Wang, X. (2019). SMOTETomek-based resampling for personality recognition. IEEE Access, 7, 129678-129689. http://doi.org/10.1109/ACCESS.2019.2940061
  • [36] Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research,4(1), 23-45. doi.org/10.1080/21693277.2016.1192517
  • [37] Yeh, C. H., Lin, M. H., Lin, C. H., Yu, C. E., & Chen, M. J. (2019). Machine learning for long cycle maintenance prediction of wind turbine. Sensors, 19(7), 1671. http://doi.org/10.3390/s19071671
  • [38] Zhu, Y., Jia, C., Li, F., & Song, J. (2020). Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling. Analytical biochemistry, 593, 113592. http://doi.org/10.1016/j.ab.2020.113592
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f183e957-f9e9-4d83-ada9-98f36b02c4ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.