PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of γ phase content on martensitic transformation and mechanical properties in Co–Ni–Al shape memory alloys

Identyfikatory
Warianty tytułu
PL
Wpływ zawartości fazy γ na przemianę martenzytyczną i właściwości mechaniczne w stopach z pamięcią kształtu z układu Co–Ni–Al
Języki publikacji
EN
Abstrakty
EN
The effect of γ phase content on the martensitic transformation and mechanical properties of Co–Ni–Al alloys was investigated. For nine Co–Ni–Al alloys with different chemical composition corresponding to the e/a ratio from 7.9 to 7.55, a quantitative microstructure investigations as well as tensile tests have been performed. The alloys were induction melted, casted, homogenized, plastically deformed by hot rolling with thickness reduction of 90% and finally again annealed and water quenched (solution treated). Quantitative image analyse of microstructure after homogenization allowed to determine the γ content from 14 to 39% for alloys containing from 25 to 30 at. % Al respectively, while further hot rolling and solution treatment caused reduction of γ phase content from 6 to 23%. Linear relationships between Ms temperature and e/a ratio was found for alloys with the e/a ratio from 7.9 to 7.72, in which the amount of γ phase increases slightly from 21 to 23%, and for composition where e/a decreases from 7.69 to 7.55 and γ phase content rises up from 6 to 12%. Tensile tests revealed that alloys with the highest γ phase content (about 20%) have the best mechanical properties; strength at the level of 1000 MPa combined with plasticity at the level of 18%.
PL
Celem pracy było określenie wpływu zawartości fazy γ w dwufazowych β + γ stopach z pamięcią kształtu z układu Co–Ni–Al po procesie walcowania na gorąco, a następnie przesycania z wysokiej temperatury (z zakresu jednofazowego β) na zakres przemiany martenzytycznej i właściwości mechaniczne tych stopów.
Rocznik
Strony
86--90
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków
Bibliografia
  • [1] Oikawa K., Ota T., Gejima F., Ohmori T., Kainuma R., Ishida K.: Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater. Trans. 42 (2001) 2472÷2475.
  • [2] Oikawa K., Wulff L., Iijima T., Gejima F., Ohmori T., Fujita A., Fukamichi K., Kainuma R., Ishida K.: Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl. Phys. Lett. 79 (2001) 3290÷3292.
  • [3] Liu Z., Yu S., Yang H., Wu G., Liu Y.: Phase separation and magnetic properties of Co–Ni–Al ferromagnetic shape memory alloys. Intermetallics 16 (2008) 447÷452.
  • [4] Tanaka Y., Oikawa K., Sutou Y., Omori T., Kainuma R., Ishida K.: Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure. Mater. Sci. Eng. A 438–440 (2006) 1054÷1060.
  • [5] Tanaka Y., Ohmori T., Oikawa K., Kainuma R., Ishida K.: Ferromagnetic Co–Ni–Al shape memory alloys with β + γ two-phase structure. Mater. Trans. 45 (2004) 427÷430.
  • [6] Maziarz W.: Structure changes of Co–Ni–Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling. J. Alloys Compd. 448 (2008) 223÷226.
  • [7] Kainuma R., Ise M., Jia C.-C., Ohtani H., Ishida K.: Phase equilibria and microstructural control in the Ni–Co–Al system. Intermetallics 4 (1996) 151÷158.
  • [8] Zhou Y., Nash P., Liu T., Zhao N., Zhu S.: The large scale synthesis of aligned plate nanostructures. Sci. Rep. 6 (2016) 1÷8.
  • [9] Hubert-Protopopescu M., Hubert H.: Aluminum–cobalt–nickel. VCH Verlagsgesellschaft, Weinheim, Germany (1991).
  • [10] Schramm J.: The nickel–cobalt–aluminum ternary system. Z. Met. 33 (1941) 403÷412.
  • [11] Enami K., Nenno S.: Memory effect in Ni–36.8 at. pct Al martensite. Metall. Trans. 2 (1971) 1487.
  • [12] Zhang P. N., Liu J.: Microstructure and mechanical properties in Co–Ni–Ga–Al shape memory alloys with two-phase structure. Journal of Alloys and Compounds 462 (2008) 225÷228.
  • [13] Wu S. K., Yang S. T.: Effect of composition on transformation temperatures of Ni–Mn–Ga shape memory alloys. Materials Letters 57 (2003) 4291÷4296.
  • [14] Kawamura T., Tachi R., Inamura T., Hosoda H., Wakashima K., Hamada K., Miyazaki S.: Effects of ternary additions on martensitic transformation of TiAu. Materials Science and Engineering A 438–440 (2006) 383÷386.
  • [15] Liu J., Li J. G.: Microstructure, shape memory effect and mechanical properties of rapidly solidified Co–Ni–Al magnetic shape memory alloys. Materials Science and Engineering A 454–455 (2007) 423÷432
  • [16] Maziarz W., Dutkiewicz J., Kolano-Burian A., Szymczak R.: Structure, thermal and magnetic properties of ferromagnetic Co–Ni–Al alloys. Inżynieria Materiałowa 3 (2010) 287÷290.
  • [17] Maziarz W., Dutkiewicz J., Santamarta R., Cesari E.: Microstructure changes in two phase β + γ Co–Ni–Al ferromagnetic shape memory alloys in relation to Al/Co ratio. Eur. Phys. J. Special Topics 158 (2008) 137÷142.
  • [18] Hamilton R. F., Sehitoglu H., Efstathiou C., Maier H. J., Chumlyakov Y., Zhang X. Y.: Transformation of Co–Ni–Al single crystals in tension. Scripta Materialia 53 (2005) 131÷136.
  • [19] Hamilton R. F., Sehitoglu H., Efstathiou C., Maier H. J., Chumlyakov Y., Zhang X. Y.: Pseudoelasticity in Co–Ni–Al single and polycrystals. Acta Materialia 54 (2005) 587÷599.
  • [20] Dilibal S., Sehitoglu H., Hamilton R. F., Maier H. J., Chumlyakov Y.: On the volume change in Co–Ni–Al during pseudoelasticity. Materials Science and Engineering A 528 (2011) 2875÷2881.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f18378b9-6d7c-4941-af14-6977b64627fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.