PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physico-mechanical properties, structure, and phase composition of (BeO + TiO2)-ceramics containing TiO2 nanoparticles (0.1–2.0 wt.%)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research studies the effects of addition of micro- and nanoparticles of TiO2 and variations in the firing temperature on the physico-mechanical properties of oxide-beryllium ceramics, shows the evolution of the microstructure of such ceramics during sintering, and presents the data of X-ray phase analysis. It was shown that the addition of TiO2 nanoparticles leads to a higher density of the ceramic material after sintering due to the interpenetration of TiO2 and BeO phases, which is caused by an increase in the diffusion mobility of atoms that can in turn be attributed to an increase in the imperfection of the structure and the fraction of grain boundaries. It was found that the presence of nanoparticles contributes to an increase in the apparent density of the material, as well as a decrease in its total and closed porosity; and an increase in the sintering temperature contributes to the transformation of the crystalline structure of TiO2 into a more conductive Ti3O5with an orthorhombic structure. The presence of nanoparticles also promotes self-healing of micropores, which can be explained by the blocking of a certain fraction of the interfaces between BeO particles by nanoparticles and the creation of a diffusion barrier.
Wydawca
Rocznik
Strony
626--638
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
  • Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
  • Shakarim State University, Semey, Kazakhstan
  • Pavlodar Pedagogical University, Pavlodar, Kazakhstan
  • Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
  • Pavlodar Pedagogical University, Pavlodar, Kazakhstan
  • Institute of composite materials, Ust-Kamenogorsk, Kazakhstan
Bibliografia
  • [1] Qing YC, Zhou WC, Luo F, Zhu DM. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int. 2016;42:16412–6.
  • [2] Lu G, Wancheng Z, Fa L, Dongmei Z, Jie W. Dielectric and microwave absorption properties of KNN/Al2O3 composite ceramics. Ceram Int. 2017;43(15):12731–5.
  • [3] Drokin NA, Kiyko VS, Pavlov AV, Malkin AI. Electrophysical properties of BT-30 ceramics. New Refract. 2020;6:56–63 [in Russian].
  • [4] Bukharin Ye N, Ilyina Ye N. Volumetric absorbers of microwave energy in the designs of modern vacuum microwave devices and measuring devices. M Radiotekhnika 2014;15(11):57–64 [in Russian].
  • [5] Mo S, Ching W. Electronic and optical properties of three phases of titanium dioxide: Rutile anatase brookite. Phy Rev B 1995;51(19):13023–32.
  • [6] Moravis EV, Olivera RGM, Castro AJN. Dielectric study in the microwave range for ceramic composites based on Sr2CoNbO6 and TiO2 mixtures. J Electron Mater. 2017;46(8):5193–200.
  • [7] Oliveira RGM, Morais JEV, Freitas DB. The effects of TiO2 addition on the dielectric and microwave properties in the ceramic matrix BiVO4. In: International Conference on Intelligent Circuits and Systems (ICICS), Phagwara, India, 19–20 April 2018; 2018. pp. 461–4.
  • [8] Lyapin LV, Pavlova MA, Semenyuk SS. Energy absorbers for microwave devices. Compon Technol. 2009;11:126–28 [in Russian].
  • [9] Kiiko VS, Pavlov AV. Composite (BeO+TiO2)-ceramic for electronic engineering and other fields of technology. Refract Ind Ceram. 2018;57(6):423–6.
  • [10] Polyanskaya T.I., Panitskov V.I., Zharikhin S.V. Designing a retarding system for continuous Ku band TWTs with an operating frequency band of at least 16.5% and a gain of at least 30 dB. Microwave Electron Microelectron. 2019;1(1):379–86 [in Russian].
  • [11] Kolomiytseva NM, Bakunin GV, Polyanskaya TI, Panitskov VI, Filin Yu Y. Design of the slowing down system “looping waveguide” for the development of industrial basic technology for the manufacture of TWT in the W band. Microwave Electron Microelectron. 2018;1:148–54 [in Russian].
  • [12] Kiiko VS, Makurin Yu N, Ivanovskiy AL. Ceramics based on beryllium oxide: preparation, physicochemical properties and application. Yekaterinburg: UB RAS, 2006: 440 [in Russian].
  • [13] Kiiko VS. The influence of titanium dioxide additives on the physicochemical and luminescent properties of beryllium ceramics. Inorgan Mater. 1994;30(5):688–93 [in Russian].
  • [14] Kiiko VS, Gorbunova MA, Makurin Yu N. Microstructure and electrical conductivity of the composite (BeO + TiO2)-ceramics. New Refract. 2007;11:68–74 [in Russian].
  • [15] Kiiko VS, Shabunin SN, Makurin Yu N. Obtaining, physicochemical properties and transmission of microwave radiation by ceramics based on BeO. Refract Tech Ceram. 2004; 10: 8–17 [in Russian].
  • [16] Kiiko VS, Pavlov AV. Ceramic for electronic engineering and other fields of technology. Refract Ind Ceram. 2018;58(6):687–92.
  • [17] Kiiko VS, Pavlov AV, Bykov VA. Production and thermophysical properties of BeO ceramics with the addition of nanocrystalline titanium dioxide. Refract Ind Ceram. 2019;59(6):616–22.
  • [18] Lepeshev AA, Pavlov AV, Drokin NA, Malkin AI, Kiiko VS, Knyazev NS. Features of the preparation and study of electrophysical characteristics (BeO+TiO2)-ceramics by impedance spectroscopy. Refract Ind Ceram. 2019;60(3):309–17.
  • [19] Malkin A, Korotkov A, Knyazev N, Kijko V, Pavlov A. Approbation of the measurement method to determining the permittivity of micro- and nanopowders of titanium dioxide. In: International multi-conference on engineering, computer and information sciences, Novosibirsk, Russia, 21–27 October 2019; 2019, pp. 217–20.
  • [20] Khaibullin RI, Tigirov LR, Ibragimov Sh Z. Ferromagnetism and two magnetic phases in rutile (TiO2) implanted with cobalt ions. Kazan. 2007;149(3):31–41 [in Russian].
  • [21] Rakhadilov B, Kenesbekov A, Skakov M, Miniyzov A. Hydrogen and deuterium storage in tungsten when irradiation with Plasma beam. MetalConf, 2018; 27: pp. 1216–1221.
  • [22] Rahadilov BK, Zhurerova LG, Sagdoldina ZB, Kenesbekov AB, Bayatanova LB. Morphological Changes in the Dislocation Structure of Structural Steel 20GL after Electrolytic-Plasma Hardening of the Surface. Journal of Surface Investigation, 2021;15(2):408–413.
  • [23] Li M, Hebenstreit W, Diebold U. Morphology change of oxygen-restructured TiO2 (110) surfaces by UHV annealing: formation of a low-temperature (1×2) structure. Phys Rev B. 2000;61(7):4926–33.
  • [24] Sekiya T, Kamei S, Kurita S. Luminescence of anatase TiO2 single crystals annealed in oxygen atmosphere. J Lumin. 2000;87–9:1140–42.
  • [25] Tikhov VA, Yatsyshen VV. Features of the scattering of a high-frequency electromagnetic field by a nanoscale ferromagnetic sphere. VolSU Bull. 2021;10(4):116–20 [in Russian].
  • [26] Lia Y, Chen Ch, Pan X, Ni Y, Zhang S, Huang J, et al. Multiband micro-wave absorption films based on defective multiwalled carbon nanotubes added carbonyl-iron/acrylicresin. Physica B. 2009;404:1343–6.
  • [27] Rodionov V.V. Mechanisms of interaction of microwave radiation with nanostructured carbon-containing materials: CSc thesis FGBOU VO. Southwest State University, Kursk. 2015:169 [in Russian].
  • [28] Kandiel TA, Robben L, Alkaimad A, Bahnemann D. Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem Photobiol Sci. 2013;12(4):602–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f18336b8-d864-4217-8064-23a4f0240b80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.