PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fully steerable collocated first-order cardioid microphone array acoustic beam-pattern

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
W pełni sterowalny, niezależny od sygnału wejsciowego kolokacyjny mikrofon typu cardioid
Języki publikacji
EN
Abstrakty
EN
In the paper, a data-independent beamforming method capable of fully steering the mainlobe of the first-order cardioid triad is presented. This proposed method exploits the multi-pattern operating mode of the dual-diaphragm microphones design of some first-order cardioid microphones to extend the polar-azimuth space in to which the mainlobe of such cardioid triad to the full sphere. The beamwidth and directivity of the proposed collocated array are derived and analyzed.
PL
W artykule przedstawiono niezalezny od sygnału wejściowego układ mikrofonów pojemnościowych umożliwiających wsterowanie listka głównego systemu cardioid (w kształcie serca) pierwszego rzędu. Wykorzystano mikrofon z dwoma diafragmami i wieloma czujnikami.
Rocznik
Strony
73--77
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Department of Electrical Engineering, University of Nigeria, Nsukka, 410001 Enugu, Nigeria
  • Department of Electrical and Electronic Engineering, Federal University of Agriculture, Markurdi, Benue, Nigeria
  • School of Engineering and Computer Science Victoria University of Wellington, PO Box 600, Wellington 6400, New Zealand
Bibliografia
  • [1] Wong K. T. , Nnonyelu C. J. , and Wu Y. I.: A triad of cardioid sensors in orthogonal orientation and spatial collocation – its spatial-matched-filter-type beam-pattern, IEEE Transactions on Signal Processing, 66(4), pp. 895–906, February 2018.
  • [2] Nnonyelu C. J., Wong K. T., and Wu Y. I.: Cardioid microphones/ hydrophones in a collocated/orthogonal triad – a new beamformer with no beam-pointing error, The Journal of the Acoustical Society of America, 145(1), pp. 575–588, January 2019.
  • [3] Nehorai A. and Paldi E. : Acoustic vector-sensor array processing, IEEE Transactions on Signal Processing, 42(9), pp. 2481–2491, September 1994.
  • [4] Wong K. T. and Zoltowski M. D.: Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations, IEEE Journal of Oceanic Engineering, 22(4), pp. 649–658, October 1997.
  • [5] D’Spain G. L. , Hodgkiss W. S. , and Edmonds G. L. : Energetics of the deep ocean’s infrasonic sound field, The Journal of the Acoustical Society of America, 89(3), pp. 1134–1158, March 1991.
  • [6] D’Spain G. L., HodgkissW. S., and Edmonds G. L.: The simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting Swallow floats, IEEE Journal of Oceanic Engineering, 16(2), pp. 195– 207, April 1991.
  • [7] Nickles J. C. , Edmonds G., Harriss R., Fisher F., Hodgkiss W. S., Giles J., and D’Spain G.: A vertical array of directional acoustic sensors, in OCEANS 92 Proceedings: Mastering the Oceans Through Technology, 1, August 1992, pp. 340–345.
  • [8] Mathew V., Idichandy V. G., and Bhattacharyya S. K.: A perforated-ball velocity meter for underwater kinematics measurement in waves and current, in Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418), pp. 218–223, May 2000.
  • [9] Nnonyelu C. J. and Morris Z. N.: Acoustical direction finding using a bayesian regularized multilayer perceptron artificial neural networks on a tri-axial velocity sensor, International Journal of Mechatronics, Electrical and Computer Technology, 10(35), January 2020.
  • [10] McEachern J. F., McConnell J. A., Jamieson J., and Trivett D.: Arap - deep ocean vector sensor research array, in OCEANS 2006, pp. 1–5, 2006, .
  • [11] Shipps J. C. and Deng K.: A miniature vector sensor for line array applications,” in Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), 5, pp. 2367–2370, 2003.
  • [12] Yntema D. R., Druyvesteyn W. F., and Elwenspoek M.: A four particle velocity sensor device, The Journal of the Acoustical Society of America, 119(2), pp. 943–951, February 2006.
  • [13] Eargle J., The Microphone Book, 2nd ed. Massachusetts: Focal Press, 2005.
  • [14] Ballou G., Ciaudelli J., and Schmitt V., Electroacoustic Devices: Microphones and Loudspeakers, G. Ballou, Ed. Oxford, UK: Focal Press, 2009.
  • [15] Torio G. and Segota J.: Unique directional properties of dualdiaphragm microphones, Engineering, 2000.
  • [16] Huang Y. and Benesty J., Eds., Audio Signal Processing for Next-Generation Multimedia Communication Systems. Boston: Kluwer Academic Publishers, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f17c9d10-b922-44b7-911f-ad955b7f88a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.