PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotation Invariance in Graph Convolutional Networks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
Convolution filters in deep convolutional networks display rotation variant behavior. While learned invariant behavior can be partially achieved, this paper shows that current methods of utilizing rotation variant features can be improved by proposing a grid-based graph convolutional network. We demonstrate that Grid-GCN heavily outperforms existing models on rotated images, and through a set of ablation studies, we show how the performance of Grid-GCN implies that there exist more performant methods to utilize fundamentally rotation variant features and we conclude that the inherit nature of spectral graph convolutions is able to learn invariant behavior.
Rocznik
Tom
Strony
81--90
Opis fizyczny
Bibliogr. 41 poz., rys., wz., wykr., tab.
Twórcy
  • American School of Warsaw Warszawska 202, 05-520 Bielawa, Poland
  • University of Warsaw Krakowskie Przedmie´scie 26/28, 00-927 Warszawa, Poland
Bibliografia
  • 1. A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020. [Online]. Available: https://arxiv.org/abs/2004.10934
  • 2. L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep learning for generic object detection: A survey,” International Journal of Computer Vision, vol. 128, no. 2, pp. 261–318, Oct. 2019. [Online]. Available: https://doi.org/10.1007/s11263-019-01247-4
  • 3. J. Kim, W. Jung, H. Kim, and J. Lee, “Cycnn: A rotation invariant cnn using polar mapping and cylindrical convolution layers,” 2020.
  • 4. D. Marcos, M. Volpi, and D. Tuia, “Learning rotation invariant convolutional filters for texture classification,” 2016 23rd International Conference on Pattern Recognition (ICPR), Dec 2016. [Online]. Available: http://dx.doi.org/10.1109/ICPR.2016.7899932
  • 5. W. Shi and R. Rajkumar, “Point-GNN: Graph neural network for 3d object detection in a point cloud,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun. 2020. [Online]. Available: https://doi.org/10.1109/cvpr42600.2020.00178
  • 6. A. Luo, X. Li, F. Yang, Z. Jiao, H. Cheng, and S. Lyu, “Cascade graph neural networks for RGB-D salient object detection,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XII, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12357. Springer, 2020, pp. 346–364. [Online]. Available: https://doi.org/10.1007/978-3-030-58610-2_21
  • 7. Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-object tracking with graph neural networks,” in Proceedings of (ICRA) International Conference on Robotics and Automation, May 2021.
  • 8. A. O. Salau and S. Jain, “Feature extraction: A survey of the types, techniques, applications,” in 2019 International Conference on Signal Processing and Communication (ICSC). IEEE, Mar. 2019. [Online]. Available: https://doi.org/10.1109/icsc45622.2019.8938371
  • 9. S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and feature extraction techniques in machine learning,” in 2014 Science and Information Conference. IEEE, Aug. 2014. [Online]. Available: https://doi.org/10.1109/sai.2014.6918213
  • 10. Z. Chen, X. Jin, B. Zhao, X. Wei, and Y. Guo, “Hierarchical context embedding for region-based object detection,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXI, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12366. Springer, 2020, pp. 633–648. [Online]. Available: https://doi.org/10.1007/978-3-030-58589-1_38
  • 11. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” Lecture Notes in Computer Science, p. 21–37, 2016. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-0_2
  • 12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun. 2016. [Online]. Available: https://doi.org/10.1109/cvpr.2016.90
  • 13. D. Rukhovich, K. Sofiiuk, D. Galeev, O. Barinova, and A. Konushin, “Iterdet: Iterative scheme for object detection in crowded environments,” in Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshops, S+SSPR 2020, Padua, Italy, January 21-22, 2021, Proceedings, ser. Lecture Notes in Computer Science, A. Torsello, L. Rossi, M. Pelillo, B. Biggio, and A. Robles-Kelly, Eds., vol. 12644. Springer, 2020, pp. 344–354. [Online]. Available: https://doi.org/10.1007/978-3-030-73973-7_33
  • 14. H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution discrepancy,” in Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 8250–8260. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/d03a857a23b5285736c4d55e0bb067c8-Abstract.html
  • 15. Z. Lu, X. Jiang, and A. Kot, “Deep coupled ResNet for low-resolution face recognition,” IEEE Signal Processing Letters, vol. 25, no. 4, pp. 526–530, Apr. 2018. [Online]. Available: https://doi.org/10.1109/lsp.2018.2810121
  • 16. M. Kawulok, P. Benecki, S. Piechaczek, K. Hrynczenko, D. Kostrzewa, and J. Nalepa, “Deep learning for multiple-image super-resolution,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, p. 1062–1066, Jun 2020. [Online]. Available: http://dx.doi.org/10.1109/LGRS.2019.2940483
  • 17. A. Zhou, Y. Ma, Y. Li, X. Zhang, and P. Luo, “Towards improving generalization of deep networks via consistent normalization,” CoRR, vol. abs/1909.00182, 2019. [Online]. Available: http://arxiv.org/abs/1909.00182
  • 18. T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in context,” in Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser. Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol. 8693. Springer, 2014, pp. 740–755. [Online]. Available: https://doi.org/10.1007/978-3-319-10602-1_48
  • 19. R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 2014, pp. 580–587. [Online]. Available: https://doi.org/10.1109/CVPR.2014.81
  • 20. S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017. [Online]. Available: https://doi.org/10.1109/TPAMI.2016.2577031
  • 21. J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 779–788. [Online]. Available: https://doi.org/10.1109/CVPR.2016.91
  • 22. A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical multi-scale attention for semantic segmentation,” CoRR, vol. abs/2005.10821, 2020. [Online]. Available: https://arxiv.org/abs/2005.10821
  • 23. H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He, J. Mueller, R. Manmatha, M. Li, and A. J. Smola, “Resnest: Split-attention networks,” CoRR, vol. abs/2004.08955, 2020. [Online]. Available: https://arxiv.org/abs/2004.08955
  • 24. Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for semantic segmentation,” in Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VI, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12351. Springer, 2020, pp. 173–190. [Online]. Available: https://doi.org/10.1007/978-3-030-58539-6_11
  • 25. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020. [Online]. Available: https://doi.org/10.1016/j.aiopen.2021.01.001
  • 26. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. [Online]. Available: https://openreview.net/forum?id=SJU4ayYgl
  • 27. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available: http://arxiv.org/abs/1312.6203
  • 28. Q. Liu, M. Kampffmeyer, R. Jenssen, and A. Salberg, “SCG-Net: Self-Constructing Graph Neural Networks for Semantic Segmentation,” CoRR, vol. abs/2009.01599, 2020. [Online]. Available: https://arxiv.org/abs/2009.01599
  • 29. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 3837–3845. [Online]. Available: https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
  • 30. D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata, T. Kashiyama, and Y. Sekimoto, “Global road damage detection: State-of-the-art solutions,” in IEEE International Conference on Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020, X. Wu, C. Jermaine, L. Xiong, X. Hu, O. Kotevska, S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-Masri, Z. Chen, and J. Saltz, Eds. IEEE, 2020, pp. 5533–5539. [Online]. Available: https://doi.org/10.1109/BigData50022.2020.9377790
  • 31. D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, Jan. 2020. [Online]. Available: https://doi.org/10.1186/s12864-019-6413-7
  • 32. S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data using matthews correlation coefficient metric,” PLOS ONE, vol. 12, no. 6, p. e0177678, Jun. 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.0177678
  • 33. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library. pdf
  • 34. M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” CoRR, vol. abs/1903.02428, 2019. [Online]. Available: http://arxiv.org/abs/1903.02428
  • 35. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’16. USA: USENIX Association, 2016, p. 265–283.
  • 36. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
  • 37. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.
  • 38. J. Gao, T. Zhang, and C. Xu, “Graph convolutional tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  • 39. A. Nicolicioiu, I. Duta, and M. Leordeanu, “Recurrent space-time graph neural networks,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/383beaea4aa57dd8202dbff464fee3af-Paper.pdf
  • 40. Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “A2-nets: Double attention networks,” CoRR, vol. abs/1810.11579, 2018. [Online]. Available: http://arxiv.org/abs/1810.11579
  • 41. A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural networks,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.
Uwagi
1. Track 1: Artificial Intelligence in Applications
2. Session: 15th International Symposium Advances in Artificial Intelligence and Applications
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f17959c2-2559-49f8-80da-6077bf98366d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.