PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The model of temporary temperature field during multi-pass arc weld surfacing. Pt. 1, Analitycal description

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a model of a temperature field in a steel element during multi-pass Gas Metal Arc Weld surfacing taking into account heat of the melted electrode material. An analytical solution for a half-infinite body model is obtained by aggregating temperature increments caused by applying liquid metal and heat radiation of a moving electrode. The assumptions are Gaussian distributed heat sources of applied melted electrode material and of an electric arc.
Rocznik
Strony
123--130
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology Częstochowa, Poland
autor
  • Pedagogical Faculty, Jan Dlugosz University in Czestochowa, Poland
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Goldak J., Chakravarti A., Bibby A., A new finite element model for welding heat sources, Metallurgical Transactions 1984, 15B, 299-305.
  • [2] Komanduri R., Hou Z.B., Thermal analysis of the arc welding process: Part I. General solutions, Metall. Mater. Trans. 2000, 31B, 1353-1370.
  • [3] Kumar A., Debroy T., Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions, Metall. Mater. Trans. 2007, 38A, 506-519.
  • [4] Mahapatra M.M., Datta G.L., Pradhan B., Three-dimensional finite element analysis to predict the effects of shielded metal arc welding process parameters on temperature distributions and weldment zones in butt and one-sided fillet welds, Proc. I. Mech. E. Part B: J. Eng. Manuf. 2006, 220, 837-845.
  • [5] Piekarska W., Kubiak M., Saternus Z., Numerical modelling of thermal and structural strain in laser welding process, Archiv. Metall. Materials 2012, 57, 1219-1227.
  • [6] Kulawik A., Modeling of thermomechanical phenomena of welding process of steel pipe, Archiv. Metall. Materials 1012, 57, 1229-1238.
  • [7] Fu G., Lourenco M.I., Duan M., Estefen S.F., Effect of boundary conditions on residual stress and distortion in T-joint welds, J. Constructional Steel Research 2014, 102, 121-135.
  • [8] Börjesson L., Lindgren L.E., Simulation of multipass welding with simultaneous computation of material properties, Trans. ASME 2001, 123, 106-111.
  • [9] Jiang W., Yahiaoui K., Hall F.R., Finite element predictions of temperature distributions in a multipass welded piping branch junction, J. Press. Vessel Technol. 2005, 127, 7-12.
  • [10] Deng D., Murakawa H., Numerical simulation of temperature field and residual stress in multipass welds in stainless steel pipe and comparison with experimental measurements, Comput. Mat. Sci. 2006, 37, 269-277.
  • [11] Heinze C., Schwenk C., Rethmeier M., Numerical calculation of residual stress development of multi-pass gas metal arc welding under high restraint conditions, Mat. Design 2012, 35, 201-209.
  • [12] Pathak C.S., Navale L.G., Sahasrabudhe A.D., Rathod M.J., Analysis of thermal cycle during multipass arc welding, Welding J. 2012, 91, 149-154.
  • [13] Joshi S., Hildebrand J., Aloraier A.S., Rabczuk T., Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate, Comput. Mat. Sci. 2013, 69, 559-565.
  • [14] Rosenthal D., Mathematical theory of heat distribution during welding and cutting, Welding J. 1941, 20, 220-234.
  • [15] Rykalin N.N., Thermal basics of welding, AN SSSR, Moskva 1947 (in Russian).
  • [16] Eagar T.W., Tsai N.S., Temperature fields produced by traveling distributed heat sources, Welding J. 1983, 62, 346-355.
  • [17] Bo K.S., Cho H.S., Transient temperature distribution in arc welding of finite thickness plates, Proc. Inst. Mech. Eng. 1990, 204 B3, 175-183.
  • [18] Jeong S.K., Cho H.S., An analytical solution to predict the transient temperature distribution in fillet arc welds, Welding J. 1997, 76, 223-232.
  • [19] Nguyen N.T., Ohta A., Matsuoka K., Suzuki N., Maeda Y., Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources, Welding J. 1999, 78, 265-274.
  • [20] Nguyen N.T., Mai Y.W., Simpson S., Ohta A., Analytical approximate solution for double ellipsoidal heat source in finite thick plate, Welding J. 2004, 84, 82-93.
  • [21] Kwon Y., Weckman D.C., Analytical thermal model of conduction mode double sided arc welding, Sci. Technol. Weld. Joining 2008, 13, 539-549.
  • [22] Wu C.S., Sun J.S., Modelling the arc heat flux distribution in GMA welding, Comput. Mat. Sci. 1998, 9, 397-402.
  • [23] Jeong S.K., Cho H.S., An analytical solution for transient temperature distribution in fillet arc welding including the effect of molten metal, Proc. Inst. Mech. Egrs 1997, 211, 63-72.
  • [24] Kang S.F., Cho H.S., Analytical solution for transient temperature distribution in gas tungsten arc welding with consideration of filler wire, Proc. Instsn. Engrs 1999, 213B, 799-811.
  • [25] Klimpel A., Balcer M., Klimpel A.S., Rzeźnikiewicz A., The effect of the method and parameters in the GMA surfacing with solid wires on the quality of pudding welds and the content of the base material in the overlay, Welding Int. 2006, 20, 845-850.
  • [26] Radaj D., Heat Effects of Welding. Temperature Field, Residual Stress, Distortion, Springer- -Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo 1992.
  • [27] Easterling K.E., Modelling the weld thermal cycle and transformation behaviour in the heat affected zone, [in:] Mathematical Modelling of Weld Phenomena, eds. H. Cerjak, K.E. Easterling, The Institute of Materials, London 1993.
  • [28] Winczek J., Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source, Int. J. Heat Mass Transfer 2010, 53, 5774-5781.
  • [29] Winczek J., Temperature field in surfaced steel casts with the heat of the weld taken into account, Archiv. Foundry Eng. 2014, 14, Spec. Is. 1/2014, 121-126.
  • [30] Vishnu P.R., Li W.B., Easterling K.E., Heat-flow model for pulsed welding, Mater. Sci. Technol. 1991, 7, 649-659.
  • [31] Modenesi P.J., Reis R.I., A model for melting rate phenomena in GMA welding, J. Mater. Proc. Technol. 2007, 189, 199-205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f17517ac-cfc4-4003-8706-7643cfc37f16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.