Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tensile tests were carried out on three series of composite samples according to the ASTM (American Society for Testing and Materials). The materials tested were characterised by using the same manufacturing method. The specimens were hand-laminated using MGS L285/H285 epoxy resin. The feature that differentiates the structure of each laminate series is the type of reinforcement. A biaxial fabric IMS65 CTLX with a 0/90 arrangement was used to reinforce the C-series composite specimens; for the D-series, a symmetrical fabric Interglass 02037 with a 0/90 weave was used, and for the e-series specimens, a modular fabric IMS65 with a 45 weave was used. The share of composites in the manufacture of construction products is steadily increasing. This is due to the development of new technologies for manufacturing composite elements and composites, with properties that are more and more in line with the requirements of the industry resulting from technological progress. Composite products have to meet many performance requirements. Tensile testing is used to determine some of the key mechanical properties of laminates. Fibre-reinforced polymer (FRP) composites have been used in various engineering structures for many decades. Their unique physical and mechanical properties make them a well-known, most produced and most widely used type of composite materials. In the case of fibre composites, it is the fibres that take over the basic stresses and are responsible for achieving the appropriate stiffness and strength, while the matrix ensures optimum use of the properties of the fibres and gives shape to the manufactured element. The mechanical properties of the composite and its failure process are fundamentally dependent on the high strength of the fibres, the stiffness of the matrix and the strength of the fibre-matrix interface.
Czasopismo
Rocznik
Tom
Strony
45--66
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
autor
- Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
autor
- Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
- [1] Redakcja naukowa, Bielawski R. and Grend B. “Bezpieczeństwo lotnicze w aspekcie rozwoju technologicznego.” Wydawnictwo Akademii Sztuki Wojennej, Warszawa (2017): pp. 25-26, 30-36.
- [2] Coates J.F. “Trends Shaping the Materials Revolution.” Technological Forecasting and Social Change Vol. 41 (1992): pp. 189-193.
- [3] Bielawski R. “Wybrane Zagadnienia z Budowy Statków Powietrznych; Definicje, pojęcia i klasyfikacje.” Wydawnictwo Akademii Obrony Narodowej, Warszawa (2015): pp. 8-9, 38-42.
- [4] Boczkowska A., Kapuściński J., Puciłowski K. and Wojciechowski S. “Kompozyty.” Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2000).
- [5] What is a composite material? (A definitive guide). Available at: https://www.twi-global.com/technical-knowledge/faqs/what-is-a-composite-material (accessed on 7 December 2021).
- [6] Kaczorowski M. and Krzyńska A. “Konstrukcyjne materiały metalowe, ceramiczne i kompozytowe.” Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2008): pp. 268-271.
- [7] Rajak D.K., Pagar D.D., Kumar R. and Pruncu C.I. “Recent Progress of Reinforcement Materials: A Comprehensive Overview of Composite Materials”. Journal of Materials Research and Technology Vol. 8 No. 6 (Nov.-Dec. 2019): pp. 6354-6374.
- [8] Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M. and Elharfi A. “Polymer Composite Materials: A Comprehensive Review.” Composite Structures Vol. 262 (15 April 2021): pp. 113640.
- [9] Woźniak D. and Kukiełka L. “Kompozyty w technice w aspektach materiałów nowej generacji.” AUTOBUSY 6/2014.
- [10] Królikowski W. “Polimerowe kompozyty konstrukcyjne.” Wydawnictwo Naukowe PWN SA, Warszawa (2012): pp. 16-18.
- [11] Mahesh V., Joladarashi S. and Kulkarni S.M. “A Comprehensive Review on Material Selection for Polymer Matrix Composites Subjected to Impact Load.” Defence Technology Vol. 17 No. 1 (Feb. 2021): pp. 257-277.
- [12] Low I.M. and Dong Y. “Composite Materials: Manufacturing, Properties and Applications.” Elsevier; 1st edition (July 5, 2021).
- [13] Korzec I., Czarnigowski J., Łusiak T., Rękas D., Marciniak M. and Komajda K. “Modern Laminate Composite Designed for Aircraft Construction.” Journal of Technology and Exploitation in Mechanical Engineering Vol. 5 No. 1 (2019): pp. 1-8.
- [14] Joseph P. Greene, ”Polymer Composites.” In: Automotive Plastics and Composites Materials and Processing (2021), pp. 191-222.
- [15] Das S. and Yokozeki T. “A Brief Review of Modified Conductive Carbon/Glass Fibre reinforced Composites for Structural Applications: Lightning Strike Protection, Electromagnetic Shielding, and Strain Sensing.” Composites Part C: Open Access Vol. 5 (July 2021): p. 100162.
- [16] Salahuddin B., Faisal S.N., Baigh T.A., Alghamdi M.N., Islam M.S., Song B., Zhang X., Gao S. and Aziz S. “Carbonaceous Materials Coated Carbon Fibre Reinforced Polymer Matrix Composites.” Polymers Vol. 13 (2021): p. 2771.
- [17] Rajak D.K., Pagar D.D., Menezes P.L. and Linul E. “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications.” Polymers Vol. 11 (2019): p. 1667.
- [18] The science and technology of composite materials. Available at: https://www.science.org.au/curious/technology-future/composite-materials (accessed on 7 December 2021).
- [19] Egbo M.K. “A Fundamental review on Composite Materials and Some of their Applications in Biomedical Engineering.” Journal of King Saud University - Engineering Sciences Vol. 33 No. 8 (Dec. 2021): pp. 557-568.
- [20] Zavatta N., Rondina F., Falaschetti M.P. and Donati L. “Effect of Thermal Ageing on the Mechanical Strength of Carbon Fibre Reinforced Epoxy Composites.” Polymers Vol. 13 (2021): p. 2006.
- [21] Saeedifar M. and Zarouchas D. “Damage Characterization of Laminated Composites Using Acoustic Emission.” Composites Part B: Engineering Vol. 195 (15 Aug. 2020): p. 108039.
- [22] Saeedifar M., Najafabadi M.A., Zarouchas D., Toudeshky H.H. and Jalalvand M. “Clustering of Interlaminar and Intralaminar Damages in Laminated Composites Under Indentation Loading Using Acoustic Emission.” Composites Part B: Engineering Vol. 144 (1 July 2018): pp. 206-219.
- [23] Towsyfyan H., Biguri A., Boardman R. and Blumensath T. “Successes and Challenges in Non-Destructive Testing of Aircraft Composite Structures.” Chinese Journal of Aeronautics Vol. 33 No. 3 (March 2020): pp. 771-791.
- [24] He Y., Tian G., Pan M. and Chen D. “Non-Destructive Testing of Low-Energy Impact in CFRP Laminates and Interior Defects in Honeycomb Sandwich Using Scanningpulsed Eddy Current.” Composites: Part B Vol. 59 (2014): pp. 196-203.
- [25] Sujon M.A.S., Islam A. and Nadimpalli V.K. “Damping and Sound Absorption Properties of Polymer Matrix Composites.” Polymer Testing Vol. 104 (December 2021): p. 107388.
- [26] Komorek A. and Przybyłek P. “Naprawa uszkodzeń kompozytowych elementów lotniczych wywołanych niskoenergetycznym obciążeniem udarowym.” Technologia i Automatyzacja Montażu nr 4/2011.
- [27] Huang S., Fu Q., Yan L. and Kasal B. “Characterization of Interfacial Properties between Fibre and Polymer Matrix in Composite Materials.” Journal of Materials Research and Technology Vol. 13 (July-Aug. 2021): pp. 1441-1484.
- [28] May D., Goergen C. and Friedrich K. “Multifunctionality of Polymer Composites Based on Recycled Carbon Fibers.” Advanced Industrial and Engineering Polymer Research Vol. 4 (2021): pp. 70-81.
- [29] Łusiak T., Novák A., Janovec M. and Bugaj M., “Measuring and Testing Composite Materials Used in Aircraft Construction.” Key Engineering Materials Vol. 904 (2021): pp. 161-166.
- [30] Lefeuvre A., Garnier S., Jacquemin L., Pillain B. and Sonnemann G. “Anticipating in-Use Stocks of Carbon Fiber Reinforced Polymers and Related Waste Flows Generated by the Commercial Aeronautical Sector Until 2050.” Resources, Conservation and Recycling Vol. 125 (October 2017): pp. 264-272.
- [31] Bielawski R., Rządkowski W., Augustyn S. and Pyrzanowski P. “Nowoczesne materiały stosowane w konstrukcjach lotniczych - wybrane problemy oraz kierunki rozwoju.” Zeszyty Naukowe Politechniki Rzeszowskiej 291, Mechanika 87 RUTMech, t. XXXII z. 87 (3/15), (lipiec-wrzesień 2015): pp. 203-216.
- [32] Galos J. “Thin-Ply Composite Laminates.” Composite Structures Vol. 236 (15 March 2020): p. 111920.
- [33] Nsengiyumva W., Zhong S., Lin J., Zhang Q., Zhong J. and Huang Y. “Advances, limitations and Prospects of Nondestructive Testing and Evaluation of Thick Composites and Sandwich Structures.” Composite Structures Vol. 236 (15 Jan. 2021): p. 112951.
- [34] Królicka A. and Trębacki K. “Próby Wytrzymałościowe Kompozytów Polimerowych, Autobusy: technika, eksploatacja.” Systemy transportowe 9/2017
- [35] Pecho P., Hrúz M., Novák A. and Trško L. (2021). “Internal Damage Detection of Composite Structures Using Passive RFID Tag Antenna Deformation Method: Basic Research.” Sensors Vol. 21 No. 24 (2021): p. 8236. DOI. 10.3390/s21248236.
- [36] Tensile Testing: An Introduction. Available at: https://www.instron.us/en-us/our-company/library/test-types/tensile-test (accessed on 7 December 2021).
- [37] Kumar R., Mikkelsen L.P., Lilholt H. and Madsen B. “Experimental Method for Tensile Testing of Unidirectional Carbon Fibre Composites Using Improved Specimen type and Data Analysis.” Materials Vol. 14 (2021): p. 3939.
- [38] Hassan A.F. and Abdullah O.A. “New Methodology for Prestressing Fiber Composites.” Universal Journal of Mechanical Engineering Vol. 3 No. 6 (2015): pp. 252-261.
- [39] Kosicka E., Borowiec M., Kowalczuk M., Krzyzak A. and Szczepaniak R. “Influence of the Selected Physical Modifier on the Dynamical Behavior of the Polymer Composites used in the Aviation Industry.” Materials Vol. 13 (2020): p. 5479.
- [40] Zwick/Roell Z100 testing machine for tests at elevated temperature up to 1200°C. Available at: https://www.imz.pl/en/news/research_Group_Investigations_of_Properties_and/Zwick_roell_Z100_testing_machine_for_tests_at/[30,232,,,,] (accessed on 7 December 2021).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f174482f-a6ee-498b-9068-23193d704636