PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical modeling of gas flow in coal pores for methane drainage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sudden explosion of methane during underground coal mining is a major dilemma. To mitigate its occurrence and reduce the extent of methane diffusion, gas drainage operations are carried out before mining. This paper investigates methane gas flow in a coal block in order to calculate the pressure of gas and its molecule velocity for methane gas drainage operation. A coal piece surrounded by cleats was used for geometrical modeling and numerical simulation. Movements of fluid and gas molecules in a porous mediumwere successfully simulated. The numerical solution is based on COMSOL Multiphysics software. The validity of the numerical simulation was assessed using an analytical model with satisfactory results.
Rocznik
Strony
95--99
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
autor
  • School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
  • School of Mining, College of Engineering, University of Tehran, Iran
  • School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW, Australia
Bibliografia
  • 1. Akhlaghi Amiri, H. A., & Hamouda, A. A. (2013). Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dualpermeability porous medium. International Journal of Multiphase Flow, 52, 22-34.
  • 2. Akhlaghi Amiri, H. A., & Hamouda, A. A. (2014). Pore-scale modeling of nonisothermal two phase flow in 2D porous Media: Influences of viscosity, capillarity, wettability and heterogeneity. International Journal of Multiphase Flow, 61, 14-27.
  • 3. Cempa-Balewicz, M., Laczny, M., Smolinski, A., & Iwaszenko, S. (2013). Equilibrium model of steam gasification of coal. Journal of Sustainable Mining, 12(2), 21-28.
  • 4. Dhir, R., Dern, R. R., & Mavor, M. J. (1991). Economic and reserve evaluation of coal bed methane reservoirs. Texas, USA: Society of petroleum engineers, Paper No. 22024.
  • 5. Gray, I. (1987). The physical process of gas storage in movement in coal seams. Society of Petroleum Engineers & Reservoir Engineers.
  • 6. Harpalani, S., & Schraufnagel, R. A. (1990). Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Journal of Fuel, 69, 551-556.
  • 7. Harpalani, S., Zhao, X., & Farmer, I. W. (1992). .Mechanics of gas flow in coal - A laboratory investigation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 29(2), A94.
  • 8. Holditch, S. A. (1989). Enhanced recovery of coal bed methane through hydraulic fracturing. In SPE annual technical conference and exhibition. Houston, Texas: Pub: Society of Petroleum Engineers.
  • 9. Janoszek, T., Laczny, M. J., Stanczyk, K., Smolinski, A., & Wiatowski, M. (2013). Modeling of gas flow in the underground coal gasification process and its interactions with the rock environment. Journal of Sustainable Mining, 12(2), 8-20.
  • 10. Kendall, P. F., & Briggs, H. (1993). The formation of rock joints and the cleats of coal. Royal Society of Edinburgh, 53, 164-187.
  • 11. Krause, E., & Pokryszka, Z. (2013). Investigations on methane of closed coal mines. Journal of Sustainable Mining, 12(2), 40-45.
  • 12. MacDonald, G. J. (1990). The future of methane as an energy resource (Vol. 15). Annual Review of Energy. Virginia, USA.
  • 13. Mcculloch C. M., Duel M., Jeran P. W.., Cleats in Bituminous Coal Bed, Reports of Investigations No. 7910, US Bureau of Mines.
  • 14. Sereshki, F., Aziz, N., & Porter, I. (2003). Impact of coal permeability on gas sorption and coal volume change. In Proceedings of the 7th annual environmental engineering research event conference, Marysville, Victoria, Australia (pp. 333-342).
  • 15. Society of Composite Energy. (2014). Mathematical modeling of methane flow in coal matrix using COMSOL. Retrieved June 4, 2016, from http://www.ems.psu.edu/~elsworth/courses/EGEE520/2009Deliverables/reports/Hemant__Spring09_EGEE_ 520_Modelling_Methane.pdf.
  • 16. Soeder, D. J. (1991). The effects of overburden stress on coal bed methane production. Tec book, Geology in Coal Resources Utilization.
  • 17. Solano, W. A., Mastalerza, M., & Schimmelmann, A. (2007). Cleats and their relation to geologic lineaments and coal bed methane potential in Pennsylvanian coals in Indiana. International Journal of Coal Geology, 72, 187-208.
  • 18. Wang, J., Wu, R., & Zhang, P. (2015). Characteristics and applications of gas desorption with excavation disturbances in coal mining. International Journal of Coal Science & Technology, 2, 30-37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1677e36-6619-4e7f-9aa0-5e0654e6807d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.