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Nonlinear degradation modeling and maintenance policy for a 
two-stage degradation system based on cumulative damage model

System charakteryzujący się dwuetapowym procesem degradacji: 
nieliniowe modelowanie degradacji oraz wyznaczanie strategii 

eksploatacji systemu na podstawie modelu sumowania uszkodzeń
This paper attempts to take into account a two-stage degradation system which degradation rate is non-stationary and change 
over time. The system degradation is thought to be caused by shocks, and system degradation model is established based on cumu-
lative damage model. The nonlinear degradation process is expressed by different shock damage and shock counting. And shock 
damage and shock counting are assumed to be Gamma distribution and non-homogeneous Poisson process, respectively. On the 
basis of these, system reliability model and nonlinear degradation model are given. In order to optimal maintenance policy for 
considered system, adaptive maintenance policy and time-dependent maintenance policy are studied, and mean maintenance cost 
rate is established to evaluate the maintenance policies. Numerical examples are given to analyze the influences of degradation 
model parameters and find optimal maintenance policy for considered system.

Keywords:	 two-stage, nonlinear, degradation modeling, cumulative damage model, maintenance policy.

W przedstawionym artykule badano system, w którym proces degradacji zachodzi dwuetapowo, a szybkość degradacji jest zmien-
na w czasie. Przyjęto, że do degradacji systemu dochodzi w wyniku wstrząsów. Model degradacji systemu oparto na modelu 
sumowania uszkodzeń. Nieliniowy proces degradacji określono jako taki, w którym uszkodzenie powodowane wstrząsem oraz 
częstotliwość wstrząsów są wartościami zmiennymi. Przyjęto, że uszkodzenie powodowane wstrząsem ma rozkład gamma a czę-
stotliwość wstrząsów jest niejednorodnym procesem Poissona. Na tej podstawie  utworzono model niezawodności systemu oraz 
model degradacji nieliniowej. W celu opracowania optymalnej strategii eksploatacji dla rozpatrywanego systemu, rozważono dwa 
typy strategii utrzymania ruchu:  strategię adaptacyjną oraz strategię czasowo-zależną. Strategie te oceniano określając średni 
poziom kosztów eksploatacji. Przykłady numeryczne posłużyły do analizy wpływu parametrów modelu degradacji oraz pozwoliły 
określić optymalną strategię utrzymania dla rozpatrywanego systemu.

Słowa kluczowe:	 dwu-etapowy, nieliniowy, modelowanie degradacji, model sumowania uszkodzeń, strategia 
eksploatacji.
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Nomenclature

Mk	 The kth (k=1,2) stage of system degradation process 
k
ix 	 System damage value due to the ith shock in degradation stage 

Mk
Nk	 The number of shock counting in degradation stage Mk 
tc	 The change-point that degradation stage from M1 to M2
Y(t)	 System whole degradation level at time t
Yk(t) 	 Cumulative degradation quantity just for the kth stage
λk(t)	 The Poisson parameter that system at time t in degradation 

stage Mk
gc(t)	 The probability density function of change-point tc
Yf	 System failure threshold 
Tf	 The time point of system failure
Yk	 System alarm threshold in degradation stage Mk
Ti	 The ith inspection time
∆Tk	 The interval of inspection in degradation stage Mk

∆T i	 The ith interval of inspection
E(C)	 Mean maintenance cost rate
CI	 Unit cost of an inspection action
CP	 Unit cost of a preventive maintenance action
CC	 Unit cost of a corrective maintenance action
E[C(T)] Total maintenance cost in a renewal cycle T
E[T]	  Mean time length of renewal cycle T

 E[NI(T)] Average number of inspection counting in a renewal cycle T 
PP	 Probability of performing preventive maintenance in a renew-

al cycle T
PC	 Probability of performing corrective maintenance in a renewal 

cycle T

1. Introduction

Degradation analysis is a research hotspot for prognostic and 
health management (PHM), which can be used for estimating failure-
time distribution [16], predicting remaining useful life (RUL) distri-
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bution [3, 23] and exploring preventive maintenance policy [12, 25]. 
Especially, degradation process modeling is an important approach 
for evaluating the reliability of high reliable products [1, 2].

Stationary degradation process has been studied intensively to 
optimize maintenance problems. However, the degradation process 
of some systems present two-stage feature due to the influences of 
internal mechanism and external environment etc [7], where the deg-
radation rate is suddenly increased. For example, the vibration-based 
degradation signals of bearings [8] and vibration signals special fre-
quency band energy of gearboxes [14] exhibit two-stage characteristic 
in degradation test. There are two typical models with independent 
random increment, continuous time model [7] and cumulative dam-
age model [21], that can be used to present system degradation proc-
ess. Some researchers have studied on the degradation process mod-
eling for two-stage degradation system. But in most articles [5, 6, 17, 
19] the degradation processes are assumed to be continuous Gamma 
process, and degradation rates for different degradation stages are pre-
sented by different Gamma parameters. Wiener process is also used 
for two-stage degradation modeling [9]. In existing studies, the deg-
radation process is mostly supposed to be continuous and modelling 
by continuous time model. But for some systems, their degradations 
are caused by shocks and their increases of degradation levels are 
step, such as reciprocating machine. Furthermore, some system deg-
radation quantities, which are collected by interval monitoring, can 
be considered as causing by shocks, even if the system degradation 
process is continuous.

Condition-based maintenance (CBM) is an importance approach 
for reducing maintenance cost to gradual degradation system [11]. 
This maintenance decision-making method is also effective for two-
stage degradation system. But the degradation rate suddenly increased 
will bring significant impact on maintenance policy. On the basis that 
change-point of degradation rate can be monitored perfected, Saas-
souh [19] put forward an activation zone to plan the maintenance ac-
tion for a two-stage system. Fouladirad [5, 7] proposed an adaptive 
maintenance policy based on online change detection procedures, 
where alarm thresholds were diverse in different degradation stage as 
the degradation rate change. Ponchet [17] assumed that change-point 
of degradation rate cannot be monitored, and he developed two con-
dition-based maintenance optimization models with and without con-
sidering the change-point in system degradation process, respectively, 
the numerical results showed that it can bring considerable benefits 
if degradation rate changing was considered in maintenance policy. 
In these existing studies, the mean degradation rates in the first stage 
and the second stage were both considered as fixed, and the increased 
process of degradation level presented linear. In 2011, Fouladirad [6] 
took into account a system with time-dependent degradation rate after 
change-point, but the degradation process was assumed to be continu-
ous Gamma process. Meanwhile, he studied a condition-based main-
tenance policy with time-dependent alarm thresholds in the second 
degradation stage. But the interval of inspection was considered as 
fixed no matter how the degradation rate changed, it was difficult to 
achieve the best maintenance policy.

This paper considers degradation modeling and maintenance 
policy for a two-stage degradation system, which degradation proc-
ess is nonlinear and degradation rate is changed over time in both 
stages. The main contributions of this study are: (a) Considering some 
system degradation are caused by shocks, cumulative damage model 
is used for two-stage degradation process modeling, and the degrada-
tion rate are presented by different shock damage and shock counting. 
(b) As the degradation rate is changed over time, a time-dependent 
maintenance policy is proposed, which the interval of inspection is 
time-dependent.

The remainder of this paper is organized as follows. In section 2, 
a two-stage degradation system is presented and system degradation 
modelling method is studied. Two kinds of maintenance policy and 

maintenance policy evaluation method are given in section 3. In sec-
tion 4, numerical examples are used to analyze the influences of dif-
ferent parameters for two-stage degradation model. Conclusions are 
made in section 5.

2. Nonlinear degradation modeling for a two-stage 
degradation system

2.1.	 Two-stage degradation system

The system with two-stage degradation process considered in this 
paper is described as follows (as shown in Fig. 1):

In system degradation process, mean degradation rate suddenly •	
increase at a random time point. And the time point is denoted 
by change-point tc . Before tc, system is in nominal degradation 
stage M1 and mean degradation rate is small. After tc, system is 
in accelerated degradation stage M2 and mean degradation rate 
is large. The degradation rate of whole degradation process is 
non-stationary and become larger in terms of working time, so 
the degradation process is nonlinear.
System degradation level at time •	 t can be summarized by a 
scalar aging variable Y(t). There is no doubt that Y(t) is an in-
creasing stochastic scalar. System initial state is assumed to be 
intact in this paper, namely Y(0)=0. System will be considered 
as failed if degradation level Y(t) exceeds failure threshold Yf. 
And system stops functioning either for economic reasons or 
for safety reasons when Y(t) is greater than Yf . 
System degradation process can be thought as step, and degra-•	
dation level is the sum of large numbers of tiny damage values. 
Therefore, the whole degradation level at working time t can 
be expressed by cumulative damage model [22] as 
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Where Nk (k=1,2) is the number of shock counting in degradation 

stage Mk, 
k
ix is the shock damage value for ith shock in degrada-

tion stage Mk. I{E}=1 if E is true and otherwise I{E}=0. When t>tc , 
degradation level is the sum of the damage in the first stage M1 and 
the second stage M2. In this case, the working time length of system 
degradation in stage M1 is tc and in stage M2 is t-tc.

As the characteristic of cumulative damage model [17,22], system 
degradation rate is determined by damage value per shock and shock 
counting per unit time. In this paper, in order to show shock counting 

Fig. 1. Two-stage degradation process
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changes over time, the shock counting Nk is assumed to be non-homo-
geneous Poisson process (NHPP) and with Poisson parameter λk(t) at 
time t in stage Mk [4,24]. That is, the probability of shock counting Nk 
equals to m during (0, t) in stage Mk can be written as:
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Because all the shocks are independent in whole degradation 
process, the probability of shock counting in the first stage N1=m and 
in the second stage N2=n is:
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As Gamma process is suitable for describing monotonic degrada-
tion [13, 15], shock damage is assumed to be Gamma distribution in 
this study (It is important to note that the Gamma distribution is used 
for shock damage by a shock in this study, but in literatures [5-7, 17, 
19] the Gamma distribution is used for degradation level of whole 
continuous degradation process). In this paper, if the ith shock in stage 

Mk occurs at ti , the shock damage is x Ga ti
k

k i k~ ,α β( )( )  (αk it( )
is shape-parameter, βk is scale-parameter). Yk(t) is the cumulative 
degradation quantity just for the kth stage (namely whole degrada-
tion level Y(t)=Y1(t)+Y2(t) when t>tc). Meanwhile, as every shock is 
independent in degradation process, it can be known from Gamma 
theorem that Yk(t) also follows Gamma distribution. Nk is the shock 
counting in stage Mk . When Nk = 1,2,3,..., Yk(t) can be written as:
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The corresponding probability density function (PDF) is:
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Where Γ  is the Euler’s Gamma function, Γ α α( ) = − −
∞

∫ u e duu1

0
.

When Nk =0, the considered system is undamaged in degradation 
stage Mk and Yk(t)=0.

2.2.	 Reliability modeling

There are many reasons can cause the transition of degradation 
rate. Therefore, in engineering practice, change-point tc should be not 
a fixed parameter but a variable in degradation process. And it is dif-
ficult to monitor the specific time point of change-point tc in engineer-
ing. But observing some system degradation data and experimental 
data, it can be found that the change-point mostly falls in a certain 
range. Moreover, the change-point information can be obtained by 
statistical from degradation data. In this paper, it is assumed that 
change-point tc falls in time interval [tA, tB] with PDF gc(t) and 

g t dtct
t

A

B ( ) =∫ 1 , as shown in Fig. 1.

The system is reliable when degradation level Y(t) does not ex-
ceed the failure threshold Yf . As key parameters, shock damage k

ix , 

Poisson parameter λk t( )  and change-point tc all should be consid-

ered in reliability modeling of two-stage degradation system. System 
reliability modeling is divided into three periods, before change-point 
(0≤ t ≤tA), after change-point (t >tB) and change-point interval 
(tA < t ≤tB).

When 0 ≤ t ≤tA , the system reliability is:
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When t >tB , the system reliability is:
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The same to formulas (6) and (7), when tA <t ≤tB , the system reliability is:
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2.3.	 Nonlinear degradation modeling

In general, the degradation rate is gradually increasing with the 
increase of system degradation level. In degradation modeling based 
on cumulative damage model, the degradation rate is determined by 
damage value of per shock and shock counting per unit time. In other 
words, any change of shock damage or shock counting, the system 
degradation rate is affected. Therefore, both shock damage and shock 
counting should be considered in the transition of degradation rate.

2.3.1.	 Shock damage change

In order to simplify the calculation, it is assumed that the relation-
ship between the damage values of two consecutive shocks is propor-
tional. The shape-parameter of (i+1)th shock is qk times as large as ith 

shock in stage Mk, namelyα αk i k k it q t+( ) ⋅ ( )1 =  (qk >0, i=1,2,3,…).

The shape-parameter of the first shock in stage Mk is α αk kt1( )= , 

and the (i+1)th shock is α αk i k
i

kt q+( ) ( ) ⋅1 = . Therefore, when the 

shock counting in stage Mk is Nk ,the equation (4) ( )1kq ≠  becomes:
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When 1kq > , the shock damage shows increasing trend; when 1kq <  , 

the shock damage shows decreasing trend; when qk=1, system degra-
dation process is linear, and:
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2.3.2.	 Shock counting change

Shock counting per unit time is associated with system working 
time. Hence, the probability of shock counting is best related to work-

ing time. In this paper, it is assumed that Poisson parameter λk t( )  is 

variable function and shows as follows:

	
λ λ η η

k k kt t k( ) = −1    λ ηk k, >( )0 	 (11)

Therefore, the probability equations (2) and (3) of shock coun-
ting become:
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It is similar to Weibull process, when 0 1< <ηk , the time interval 

of two consecutive shocks shows increasing trend; when ηk >1 , the 

time interval of two consecutive shocks shows decreasing trend; when 

ηk =1 , the mean time interval of two consecutive shocks are fixed, 

and the shock process is a homogeneous Poisson process.

3. Maintenance policy

Research of maintenance decision-making is one of focuses for 
two-stage degradation modeling. As CBM is an effective maintenance 
policy method for various systems, CBM policy is chose to monitor 
considered system for the purpose of reducing maintenance cost. In 
the framework of this study, there are three possible maintenance ac-
tions are considered, inspection, preventive maintenance and correc-
tive maintenance, respectively. 

3.1.	 Adaptive maintenance policy 

According to the characteristic that degradation rate is diverse in 
different degradation stage for two-stage degradation system, Saas-
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souh et al. [5, 7, 19] put forward adaptive maintenance policy. And 
this maintenance policy has been proved to be useful. 

In adaptive maintenance policy, the alarm threshold (YA) and in-
terval of inspection (∆T) are defined as follows:

	 { } { }1 2c cA t t t tY Y Y≤ >= ⋅ Ι + ⋅ Ι 	 (14)

	 { } { }1 2c ct t t tT T T≤ >∆ = ∆ ⋅ Ι + ∆ ⋅ Ι 	 (15)

Set Yk 
as the alarm threshold and ∆Tk as the interval of inspection 

for degradation stage Mk . After the ith inspection (the inspection time 
is Ti ) in degradation stage Mk, the possible maintenance actions which 
can put into practice are defined as follows:

If •	 Y(Ti)<Yk , do nothing and system is left as it is until next 
inspection time Ti+1=Ti+∆Tk .
If •	 Yk ≤Y(Ti)<Yf , system is serious deteriorated and needs to be 
preventively repaired.
If •	 Y(Ti)≥Yf , system is fault and needs to be correctively re-
paired.

As the degradation rate in the second stage M2 is greater than the 
first stage M1, the parameters of adaptive maintenance policy have 
the following relationship: Y1 >Y2 , ∆T1 >∆T2 . The rule of adaptive 
maintenance policy is illustrated in Fig. 2.

3.2.	 Time-dependent maintenance policy 

As the degradation rate is faster and faster in nonlinear degrada-
tion process, the interval of inspection should be shorter and shorter in 
terms of working time. The maintenance decision-making method that 
the interval of inspection changes over time is called time-dependent 
maintenance policy in this paper. In order to facilitate engineering ap-

plication, the (i+1)th interval of inspection is r times than ith, namely 
∆Ti+1=r·∆T i and r<1.

The rule of time-dependent maintenance policy (alarm threshold, 
possible maintenance action) is similar to adaptive maintenance policy, 
the only difference is that the interval of inspection ∆Ti+1=r·∆T i. The 
rule of time-dependent maintenance policy is illustrated in Fig. 3.

3.3.	 Maintenance policy evaluation 

3.3.1.	 Evaluation method

Maintenance cost occurs when a maintenance action is per-
formed. The mean maintenance cost rate over an infinite time span is 
used to evaluate maintenance policy in this study. System is perfectly 
monitored through periodic monitor, and system state restores to be 
as good as new after a preventive/corrective maintenance action with 
negligible time. Mean maintenance cost rate can be obtained by re-
newal reward theory [20] as follows:

	 E C
E C t

t
E C T

E Tt
( ) = ( )  =

( ) 
[ ]→∞

lim 	 (16)

Where C(t) is the total maintenance cost during time [0, t], T is the 
mean time length of a renewal cycle. 

The total maintenance cost in a renewal cycle T can be written as:

	
E C T C E N T C P C PI I P P C C( )  = ( )  + + 	 (17)

The mean time length of a renewal cycle T can be expressed as
|

	 [ ] P P C fE T P T P T= + 	 (18)

3.3.2.	 The probability of corrective maintenance 

According to the rule of maintenance policy, system is considered 
as failure if any one of the following events (AC1, AC2, AC3) occurs. In 
other words, system needs to be correctively repaired and it will cause 
corrective maintenance cost CC. Take the event AC1 as a example, sys-
tem degradation process is in stage M1 (Tz<Tz+1≤tc), if the degradation 
level Y(Tz)<Y1 for zth inspection

 
and Y(Tz+1)>Yf for (z+1)th inspec-

tion, corrective maintenance action will be performed. 

	
A Y T Y Y T Y T T tC z z f z z c1 1 1 1= ( ) < ( ) ≥ < ≤{ }+ +

	
A Y T Y Y T Y t T TC z z f c z z2 2 1 1= ( ) < ( ) ≥ < <{ }+ +

	
A Y T Y Y T Y T t TC z z f z c z3 1 1 1= ( ) < ( ) ≥ < ≤{ }+ +

The probability for a corrective maintenance in a renewal cycle is 
the sums of probabilities for AC1, AC2, AC3. It is written as:

	
P P A P A P AC C C C= ( ) + ( ) + ( )1 2 3 	 (19)

Fig. 2. Adaptive maintenance policy

Fig. 3 Time-dependent maintenance policy 
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3.3.3.	 The probability of preventive maintenance

It is considered that system needs to be preventively repaired if 
any one of the following events (AP1, AP2, AP3) occurs, and it will 
cause preventive maintenance cost CP.

	
A Y T Y Y Y T Y T T tP z z f z z c1 1 1 1 1= ( ) < ≤ ( ) < < ≤{ }+ +

	
A Y T Y Y Y T Y t T TP z z f c z z2 2 2 1 1= ( ) < ≤ ( ) < < <{ }+ +

	
A Y T Y Y Y T Y T t TP z z f z c z3 1 2 1 1= ( ) < ≤ ( ) < < ≤{ }+ +

The probability for a preventive maintenance in a renewal cycle 
is expressed as:

	 ( ) ( ) ( )1 2 3P P P PP P A P A P A= + +
	

(20)

3.3.4.	 Continuous monitoring events

The system is left until next inspection time if any one of the fol-
lowing events (AI1, AI2) occurs, and it will cause monitoring cost CI .

	
A Y T Y T tI z z c1 1= ( ) < ≤{ }



	
A Y T Y T tI z z c2 2= ( ) < >{ }



The probability for system left until next inspection in a renewal 
cycle can be written as:

	 ( ) ( )1 2I I IP P A P A= +
	

(21)

The mean number of times of inspection actions in a renewal 
cycle T is:

	
E N T zPI I

z
( )  =

=

∞
∑

1
	 (22)

3.3.5.	 Mean time length of a renewal cycle

As formula (18) shown, the mean time length of a renewal cycle 
is determined by lifetime length Tf when system ends with correc-
tive maintenance and mean working time length TP when system ends 
with preventive maintenance. If the degradation level Y(t) exceeds 
failure threshold Yf , the system is considered as failed and will not 
work any time. That is to say, the lifetime length Tf is the time interval 
for Y(t) from initial value 0 to Yf 

. However, the mean working time 
length TP does not mean that system cannot work. It is just shown that 
if a preventive maintenance action performed is better for system in 
inspection time Tz. Therefore, the system working time length when 
system ends with preventive maintenance is Tz.

4. Numerical example

This section aims to present some characteristics of two-stage deg-
radation system: (a) In order to find the optimal maintenance policy 
for two-stage degradation system, mean cost rates of different main-

tenance policy are compared. (b) For the purpose of improving the 
understanding in two-stage degradation system, the influences of dif-
ferent parameter in degradation modeling are analyzed. The following 
numerical evaluations of the maintenance cost rate for two-stage deg-
radation system are obtained from Monte Carlo simulations.

4.1.	 Choice of parameters values

In this paper, the considered two-stage degradation system has the 
following features: The degradation process is linear and mean degra-
dation rate is stationary in the first stage M1, the model parameters are

α α β λ η1 1 1 1 1 1 11 1 1 1 1t qi+( ) = = = = = =, , , , . The degradation process 

is nonlinear and mean degradation rate is change over time in the 
second stage M2, the model parameters are

α α α α α β λ2 1 2 2 1 2 2 2 2 2 21 1 1t t q t qi i
i( ) = = ( ) ⋅ ( ) = ⋅ = =+, , , =   , and 

in order to present different nonlinear degradation process η2 2,q  ( 

η2 2 1,q >  ) will been evaluated as the need of studying.

The failure threshold Yf is chosen in considering with the intrin-
sic properties of a two-stage degradation system. It is considered that 
Yf=200 in this study. Meanwhile, in order to ensure the optimal result 
of mean cost rate E(C) for maintenance policy is creditable, the unit 
costs are evaluated as other literatures [5, 7, 17, 19], so CI=5, CP=50, 
CC=100. 

Because the distribution of change-point tc is affected by many fac-
tors, it is difficult to determine the PDF of tc. In this study, the tc PDF 
gc(t) is assumed to follow uniform distribution for the convenience of 
calculation. In order to analyze the influence of tc, different uniform 
distribution of tc are considered: 

Whole change-point distribution:•	  tc ~U(1,120). 
Early change-point distribution: •	 tc ~U(1,60). 
Middle change-point distribution: •	 tc ~U(30,90). 
Late change-point distribution: •	 tc ~U(60,120). 

The upper bound value of the uniform distribution is evaluated 
as 120, it is considered that system fault occurs mostly in the second 
degradation stage M2 on this occasion. Early and late change-point 
distributions present the first and second half of whole change-point 
distribution, respectively.

4.2.	 Influence of maintenance policy

The degradation level monitoring method for different mainte-
nance policy is different, which includes alarm threshold and interval 
of inspection. Meanwhile, the mean maintenance cost rate is impacted 
by monitoring method. The method for obtaining optimal parameters 
and minimum mean cost rate of maintenance policy has been men-
tioned in some literatures [10,17]. The optimal parameters of main-

Fig. 4. Mean cost rate E(C) when Y1=126, ∆T1=71, tc~U(30,90)
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tenance policy can be achieved after simulations. That 
is to say, the mean maintenance cost rate E(C) can be 
found under simulations with different alarm threshold 
and interval of inspection. Take adaptive maintenance 
policy as an example, as maintenance policy evaluation 
method studies in section 3.3, the minimum mean cost 
rate is E(C)=0.4803 when Y1=126, Y2=103, ∆T1=71, 
∆T2=44 and tc~U(30,90), as shown in contour map Fig. 
4 (E(C) are equal in the same contour). All the optimal 
parameters of maintenance policy under different cases 
can be achieved by a similar way.

As adaptive maintenance policy has been proved to 
be effective by Ponchet [19], taking the mean cost rate of 
adaptive maintenance policy as a basis of comparison. 
For instance (as Tab. 1 shown), when tc~U(30,90),

η2 21 1 01= =, .q , the minimum mean cost rate of adap-

tive maintenance policy is E1(C)=0.4803, and the mini-
mum mean cost rate of time-dependent maintenance 
policy is E2(C)=0.4622. E2(C) have a decrease of 0.0181 
compares to E1(C), so that the optimal rate is 
0.0181/0.4803=3.77%.

Nonlinear degradation process can be expressed by 
shock damage change and shock counting change. As 

shown in Tab. 1 (η2 21 1 01= =, .q ) and Tab. 2 (

t Uc ~ ,1 120( ) ), it is obvious that the mean cost rate of 

time-dependent maintenance policy is smaller than adap-
tive maintenance policy. In other words, time-dependent 
maintenance policy is better than adaptive maintenance 
policy for given system. Because degradation rate in 
stage M2 for given system is nonlinear and becomes fast-
er and faster over working time, and the interval of in-
spection in stage M2 for time-dependent maintenance 
policy ∆T2 is shorter and shorter as inspection time goes 
on. But the interval of inspection for adaptive mainte-
nance policy ∆T2 is fixed and never changed in stage 
M2.

4.3.  Influence of change-point distribution

The time distribution of change-point tc can influence 
the choice of system maintenance policy. Hence, the in-
fluence of change-point distribution is studied under both 
maintenance policies. The optimal results under different 
tc distribution for shock damage change and shock count-
ing change are shown in Tab. 1 and Tab. 2, respectively. 
Taking Tab. 1 as an example, the analyzed results can be 
achieved as follows:

Although the (a)	 tc distribution and maintenance pol-
icy are different, the variety of alarm thresholds (Y1) and 
intervals of inspection (∆T1) for the first degradation stage 
M1 is very small. The change of alarm thresholds (Y2) for 
the second degradation stage M2 is also very small, but 
the variety of intervals of inspection (∆T2) is great. It is 
because that mean system lifetime is change correspond-
ing to different tc distribution, the earlier change-point tc 
occurs, the shorter mean system lifetime.

When (b)	 tc fall in time interval (1,60), (30,90) and 
(60,120), the mean cost rates for adaptive maintenance 
policy are 0.5478, 0.4803 and 0.4421, respectively. It 
means that the mean maintenance cost rate is drop off 
with the increase of average time of tc distribution. This 
feature also conforms to time-dependent maintenance 
policy.

Table 1.	 Influence of maintenance policy and tc when shock damage change (η2 21 1 01= =, .q )

Change-point Maintenance policy Optimal parameters Mean cost rate Impact

( )~ 1,120ct U

Adaptive
1 1

2 2

126, 76
109, 38

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4827E C =

Time-dependent
1 1

2

122, 74
102, 0.66

Y T
Y r
= ∆ =
= =

( )2 0.4608E C = 0.0219
(4.54%)

( )~ 1,60ct U

Adaptive
1 1

2 2

128, 73
104, 34

Y T
Y T
= ∆ =
= ∆ =

( )1 0.5478E C =

Time-dependent
1 1

2

122, 71
102, 0.60

Y T
Y r
= ∆ =
= =

( )2 0.5341E C = 0.0137
(2.50%)

( )~ 30,90ct U

Adaptive
1 1

2 2

126, 71
103, 44

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4803E C =

Time-dependent
1 1

2

125, 72
105, 0.69

Y T
Y r
= ∆ =
= =

( )2 0.4622E C = 0.0181
(3.77%)

( )~ 60,120ct U

Adaptive
1 1

2 2

126, 74
107, 51

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4421E C =

Time-dependent
1 1

2

128, 74
108, 0.78

Y T
Y r
= ∆ =
= =

( )2 0.4204E C = 0.0217
(4.91%)

Table 2.	 Influence of maintenance policy and tc when shock counting change ( 2 21, 1.1q η= = )

Change-point Maintenance policy Optimal parameters Mean cost rate Impact

( )~ 1,120ct U

Adaptive
1 1

2 2

128, 73
114, 53

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4763E C =

Time-dependent
1 1

2

131, 73
111, 0.69

Y T
Y r
= ∆ =
= =

( )2 0.4522E C = 0.0241
(5.06%)

( )~ 1,60ct U

Adaptive
1 1

2 2

131, 75
113, 45

Y T
Y T
= ∆ =
= ∆ =

( )1 0.5182E C =

Time-dependent
1 1

2

134, 72
110, 0.63

Y T
Y r
= ∆ =
= =

( )2 0.5047E C = 0.0135
(2.61%)

( )~ 30,90ct U

Adaptive
1 1

2 2

126, 72
116, 55

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4751E C =

Time-dependent
1 1

2

130, 69
111, 0.81

Y T
Y r
= ∆ =
= =

( )2 0.4544E C = 0.0207
(4.36%)

( )~ 60,120ct U

Adaptive
1 1

2 2

129, 75
114, 60

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4269E C =

Time-dependent
1 1

2

129, 75
108, 0.84

Y T
Y r
= ∆ =
= =

( )2 0.4024E C = 0.0245
(5.74%)
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As shown in section 4.2, time-dependent maintenance policy is (c)	
better than adaptive maintenance policy for given system. The 
optimal rates are 2.50%, 3.77% and 4.91% when tc fall in time in-
terval (1,60), (30,90) and (60,120), respectively. It is obvious that 
there is more interest in using a time-dependent maintenance pol-
icy instead of an adaptive maintenance policy when the change-
point tc occurs more later. 
When (d)	 tc fall in time interval (1,120) and (30,90), the optimal rates 
are 4.54% and 3.77%, respectively. The average time of both 
(1,120) and (30,90) equal to 60. It can be known that when the 
change-point tc is defined on a larger time interval the more inter-
est can be achieved in using a time-dependent maintenance policy 
instead of an adaptive maintenance policy.

4.4.	 Influence of nonlinear degradation process

As shown in Tab. 3 and Tab. 4, different model parameters η2 and 

q2  present different nonlinear degradation process. The larger of η2  

and q2 , the faster of degradation rate increase in the second stage M2. 

When η η1 2 1= =  and q q1 2 1= = , the system mean degradation rate 

is stationary and never change, the degradation process is linear and 
single-stage. 

The optimal results under different model parameters q2 for shock 
damage change are shown in Tab. 3, and the optimal results under dif-

ferent model parameters η2  for shock counting change are shown in 
Tab. 4. The optimal results are similar between Tab. 3 and Tab. 4. Tak-
ing Tab. 3 as an example, the analyzed results can be achieved as fol-
lows:

Because degradation process is linear and degradation rate is sta-(a)	
tionary in the first stage M1 for considered system, the variety of 
alarm thresholds (Y1) and intervals of inspection (∆T1) for stage 
M1 is very small although q2 are different, especially for adaptive 
maintenance policy. 
As the growth of model parameter (b)	 q2, the alarm thresholds (Y2) 
and intervals of inspection (∆T2) for stage M2 become smaller and 
smaller. For example, q2 equal to 1.000, 1.005, 1.010, 1.015 and 
1.020, the intervals of inspection of adaptive maintenance policy 
are 75, 62, 44, 39 and 35, respectively.
When (c)	 q2 equal to 1.000, 1.005, 1.010, 1.015 and 1.020, the mean 
cost rates for adaptive maintenance policy are 0.3750, 0.4270, 
0.4803, 0.5207 and 0.5569, respectively. It means that the mean 
maintenance cost rate is going up with the increase of model pa-
rameter q2. This feature also conforms to time-dependent mainte-
nance policy.
As seen previously, the optimal rates are 1.04%, 3.02%, 3.77%, (d)	
4.55% and 5.60% when q2 equal to 1.000, 1.005, 1.010, 1.015 
and 1.020, respectively. It is obviously that there is more inter-
est in using a time-dependent maintenance policy instead of an 

Table 3.	 Influence of shock damage change ( ( )2 1,  ~ 30,90ct Uη = )

Model parameter Maintenance policy Optimal parameters Mean cost rate Impact

2 1.000q =

Adaptive
1 1

2 2

124, 75
124, 75

Y T
Y T
= ∆ =
= ∆ =

( )1 0.3750E C =

Time-dependent
1 1

2

126, 85
126, 0.80

Y T
Y r
= ∆ =
= =

( )2 0.3711E C = 0.0039
(1.04%)

2 1.005q =

Adaptive
1 1

2 2

126, 74
115, 62

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4270E C =

Time-dependent
1 1

2

122, 74
110, 0.84

Y T
Y r
= ∆ =
= =

( )2 0.4141E C = 0.0129
(3.02%)

2 1.010q =

Adaptive
1 1

2 2

126, 71
103, 44

Y T
Y T
= ∆ =
= ∆ =

( )1 0.4803E C =

Time-dependent
1 1

2

125, 72
105, 0.69

Y T
Y r
= ∆ =
= =

( )2 0.4622E C = 0.0181
(3.77%)

2 1.015q =

Adaptive
1 1

2 2

124, 68
104, 39

Y T
Y T
= ∆ =
= ∆ =

( )1 0.5207E C =

Time-dependent
1 1

2

122, 71
103, 0.63

Y T
Y r
= ∆ =
= =

( )2 0.4970E C = 0.0237
(4.55%)

2 1.020q =

Adaptive
1 1

2 2

123, 68
106, 35

Y T
Y T
= ∆ =
= ∆ =

( )1 0.5569E C =

Time-dependent
1 1

2

128, 68
99, 0.60

Y T
Y r
= ∆ =
= =

( )2 0.5257E C = 0.0312
(5.60%)
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adaptive maintenance policy when model parameter q2 greater. 
Meanwhile, when q2=1 the system mean degradation rate is fixed 
in whole degradation process, the alarm thresholds and inter-in-
spection times for both stage M1 and M2 are equal. In this case, the 
adaptive maintenance policy is the same to traditional condition-
based maintenance policy (namely global maintenance policy 
[17]), and it is no necessary to use a time-dependent maintenance 
policy instead of an adaptive maintenance policy.

5. Conclusions 

This paper takes into account degradation modeling and mainte-
nance policy for a two-stage degradation system, which degradation 
process is nonlinear and degradation rate is change over time in both 
stages. The system degradation process is considered as step, and it is 
modeled based on cumulative damage model. The nonlinear degrada-

tion process is modeled by shock damage change and shock counting 
change. In order to explore optimal maintenance policy for considered 
system, two maintenance policies have been investigated and assessed 
through their mean maintenance cost rates.  

Moreover, influence analysis of different model parameter and 
maintenance policy is studied in numerical examples, and results 
prove that: (a) It is necessary to consider monitoring method for con-
sidered system, optimal maintenance policy can help to reduce mean 
cost rate. (b) It is obvious that the mean maintenance cost rate and 
maintenance policy are impacted by change-point distribution, shock 
damage and shock counting. 
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