PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arsenate removal from aqueous solutions: thermodynamic and kinetic study on iron hydroxide-impregnated corn cob

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contamination of water resources with arsenic is a serious environmental problem. This research investigated the use of a strategic agricultural waste for Brazil, i.e., corn cob as a low-cost, biodegradable, and eco-efficient material for As(V) adsorption. Arsenate removal from an aqueous solution with iron hydroxide impregnated corn cob (IHCC) was investigated under different pH values (2-10). FTIR spectra revealed that monodentate complexes were formed during the adsorption of arsenate on IHCC. Furthermore, SEM micrographs revealed a uniform distribution of Fe(III) and also As(V) on the IHCC. IHCC was efficient in the removal of arsenic from acidic solutions, mainly those having pH values between 2 and 3 at temperatures below 50°C. The adsorption kinetics followed the pseudo-second order model with an activation energy of 39.35 ± 6.99 kJ mol-1 implying that chemical reaction was the controlling step of arsenic adsorption by IHCC. In addition, arsenic adsorption on IHCC was (i) an entropically driven, (ii) spontaneous, and (iii) endothermic phenomenon (+23.82 kJ mol-1) and involved electrostatic adsorption and chemosorption (Qmax = 40 mg/g, at 25°C). Therefore, a promising sustainable and environmentally friendly solution for the use of IHCC was devised in the current work.
Rocznik
Strony
art. no. 196592
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Universidade Federal de Ouro Preto, Graduate Program in Environmental Engineering Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil
  • Universidade Federal de Ouro Preto, Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil
  • Universidade Federal de Ouro Preto, Department of Chemistry, Institute of Exact and Biological Sciences, Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil
  • Universidade Federal de Ouro Preto, Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil
Bibliografia
  • ALKA, S., SHAHIR, S., IBRAHIM, N., NDEJIKO, M. J., VO, D.-V. N., MANAN, F. A., 2021. Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 278, 123805.
  • ANASTOPOULOS, I., KYZAS, G. Z., 2016. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq. 218, 174-185.
  • BRAINER, M. S. C. P., 2021. Coco: produção e mercado. Caderno Setorial ETENE; Banco do Nordeste do Brasil: Fortaleza, Brazil, 206, 1–13.
  • BYAMBAA, E., SEON, J., KIM, T.-H., KIM, S. D., JI, W. H., HWANG, Y., 2021. Arsenic (V) Removal by an Adsorbent Material Derived from Acid Mine Drainage Sludge. Appl. Sci. 11, 47.
  • CHEN, R., ZHI, C., YANG, H., BANDO, Y., ZHANG, Z., SUGIUR, N., GOLBERG, D., 2011. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J. Colloid Interface Sci. 359, 261-268.
  • CONAB 2021. Acompanhamento da safra brasileira de grãos. Ministério da agricultura, pecuária e abastecimento, Brasília, Brazil.
  • COPE, C. O., WEBSTER, D. S., SABATINI, D. A., 2014. Arsenate adsorption onto iron oxide amended rice husk char. Sci. Total Environ. 488, 554–561.
  • DESCHAMPS, E., CIMINELLI, V. S. T., WEIDLER, P. G., RAMOS, A. Y., 2003. Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays Clay Miner. 51, 197-204.
  • DESCHAMPS, E., MATSCHULLAT, J., 2007. Arsênio antropogênico e natural: um estudo em regiões do Quadrilátero Ferrífero. Fundação Estadual do Meio Ambiente, Belo Horizonte, Brazil.
  • DOTTO, G. L., PINTO, L. A. A., 2011. Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. J. Hazard. Mater. 187, 164-170.
  • DUPONT, L., JOLLY, G., APLINCOURT, M., 2007. Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environ. Chem. Lett. 5, 125-129.
  • GHIMIRE, K. N., INOUE, K., YAMAGUCHI, H., MAKINO, K., MIYAJIMA, T. 2003. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37, 4945-4953.
  • GOMEZ, M. A., ASSAAOUDI, H., BECZE, L., CUTLER, J. N., DEMOPOULOS, G. P., 2010. Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4•2H2O), ferric arsenate sub-hydrate (FAsH; FeAsO4•0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO4)1−x(SO4)x(OH)x]•wH2O). J. Raman Spectrosc. 41, 212-221.
  • GUAN, X.-H., WANG, J., CHUSUEI, C. C., 2008. Removal of arsenic from water using granular ferric hydroxide: Macroscopic and microscopic studies. J. Hazard. Mater. 156, 178-185.
  • GUPTA, V. K., NAYAK, A., 2012. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180, 81-90.
  • HERRAG, L., CHETOUANI, A., ELKADIRI, S., HAMMOUTI, B., AOUNITI, A., 2008. Pyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid. Port. Electrochim. Acta. 26, 211-220.
  • HO, Y. S., MCKAY, G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34, 451-465.
  • KLOSTER, G. A., VALIENTE, M., MARCOVICH, N. E., MOSIEWICKI, M. A., 2020. Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int. J. Biol. Macromol. 165, 1286-1295.
  • LADEIRA, A. C. Q., CIMINELLI, V. N. S. T., 2004. Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res. 38, 2087-2094.
  • LAKSHMIPATHIRAJ, P., NARASIMHAN, B. R. V., PRABHAKAR, S., BHASKAR RAJU, G., 2006. Adsorption of arsenate on synthetic goethite from aqueous solutions. J. Hazard. Mater. 136, 281-287.
  • LAZARIDIS, N. K., ASOUHIDOU, D. D., 2003. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite. Water Res. 37, 2875-2882.
  • LAZZARI, E., SCHENA, T., MARCELO, M. C. A., PRIMAZ, C. T., SILVA, A. N., FERRÃO, M. F., BJERK, T., CARAMÃO, E. B., 2018. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Ind. Crop. Prod. 111, 856-864.
  • LEE, K. S., LEE, J. H., 2019. Hybrid enhanced oil recovery using smart waterflooding, Gulf Professional Publishing Houston, USA.
  • LEYVA-RAMOS, R., BERNAL-JACOME, L. A., ACOSTA-RODRIGUEZ, I., 2005. Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob. Sep. Purif. Technol. 45, 41-49.
  • LIU, Y., 2006. Some consideration on the Langmuir isotherm equation. Colloids Surfaces A Physicochem. Eng. Asp. 274, 34-36.
  • LIU, Y., 2009. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data. 54, 1981-1985.
  • MAIA, L. C., SOARES, L. C., ALVES GURGEL, L. V., 2021. A review on the use of lignocellulosic materials for arsenic adsorption. J. Environ. Manage. 288, 112397.
  • MCCABE, W. L., SMITH, J. C., HARRIOTT, P., 2005. Unit operations of chemical engineering, McGraw-Hill´s Science, New York, USA.
  • MOHAN, D., CHANDER, S., 2006. Removal and recovery of metal ions from acid mine drainage using lignite - A low cost sorbent. J. Hazard. Mater. 137, 1545-1553.
  • MOHAN, D., PITTMAN, C. U., 2007. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 142, 1-53.
  • MONDAL, M., RAY, A. K., 2020. Removal of As(V) using low cost adsorbents: aerocrete and vermiculite modified with iron oxy-hydroxide. Adsorption. 26, 387-396.
  • MOSTAFA, M. G., CHEN, Y.-H., JEAN, J.-S., LIU, C.-C., LEE, Y.-C., 2011. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J. Hazard. Mater. 187, 89-95.
  • NASHINE, A., TEMBHURKAR, A., 2016. Iron oxide impregnated sugarcane bagasse waste material as sorbent for As(III) removal from water: kinetic, equilibrium and thermodynamic studies. J. Water Supply Res. Technol. 65, 645-652.
  • ODLING, G., CHATZISYMEON, E., KARVE, P., OGALE, S., IVATURI, A., ROBERTSON, N., 2020. Naturally derived carbon for E. coli and arsenic removal from water in rural India. Environ. Technol. Innov. 18, 100661.
  • PATHAK, A. K., BANDYOPADHYAY, T., 2016. Solvation of arsenate anion: combined quantum mechanics and molecular dynamics based investigation. Mol. Phys. 114, 2029-2036.
  • PEHLIVAN, E., TRAN, H. T., OUÉDRAOGO, W. K. I., SCHMIDT, C., ZACHMANN, D., BAHADIR, M., 2013a. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem. 138, 133-138.
  • PEHLIVAN, E., TRAN, T. H., OUÉDRAOGO, W. K. I., SCHMIDT, C., ZACHMANN, D., BAHADIR, M., 2013b. Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Process. Technol. 106, 511-517.
  • PEREIRA, A. R., SOARES, L. C., TEODORO, F. S., ELIAS, M. M. C., FERREIRA, G. M. D., SAVEDRA, R. M. L., SIQUEIRA, M. F., MARTINEAU-CORCOS, C., DA SILVA, L. H. M., PRIM, D., GURGEL, L. V. A., 2020. Aminated cellulose as a versatile adsorbent for batch removal of As(V) and Cu(II) from mono- and multicomponent aqueous solutions. J. Colloid Interface Sci. 576, 158-175.
  • RAHMAN, H. L., ERDEM, H., SAHIN, M., ERDEM, M., 2019. Iron-Incorporated Activated Carbon Synthesis from Biomass Mixture for Enhanced Arsenic Adsorption. Water. Air. Soil Pollut. 231, 6.
  • RIJITH, S., ANIRUDHAN, T. S., SHRIPATHI, T., 2012. Evaluation of Iron(III) Chelated Polymer Grafted Lignocellulosics for Arsenic(V) Adsorption in a Batch Reactor System. Ind. Eng. Chem. Res. 51, 10682-10694.
  • SANYANG, M., GHANI, W. A. W. A. K., IDRIS, A., AHMAD, M. B., 2016. Hydrogel biochar composite for arsenic removal from wastewater. Desalin. Water Treat. 57, 3674–3688.
  • SCHNEIDER, V. E., PERESIN, D., TRENTIN, A. C., BORTOLIN, T. A., SAMBUICHI, R. H. R., 2012. Diagnóstico dos resíduos orgânicos do setor agrossilvopastoril e agroindustriais associadas. Available from: https://repositorio.ipea.gov.br/handle/11058/7687. Accessed May 15, 2024.
  • SEN GUPTA, S., BHATTACHARYYA, K. G., 2011. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interface Sci. 162, 39-58.
  • SHAFIQUE, U., IJAZ, A., SALMAN, M., ZAMAN, W. U., JAMIL, N., REHMAN, R., JAVAID, A., 2012. Removal of arsenic from water using pine leaves. J. Taiwan Inst. Chem. Eng. 43, 256-263.
  • SHAHWAN, T., 2021. Critical insights into the limitations and interpretations of the determination of ΔGo, ΔHo, and ΔSo of sorption of aqueous pollutants on different sorbents. Colloids Interface Sci. Commun. 41, 100369.
  • SMITH, A. H., LINGAS, E. O., RAHMAN, M., 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 78, 1093-1103.
  • SUD, D., MAHAJAN, G., KAUR, M. P., 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresour. Technol. 99, 6017-6027.
  • TATY-COSTODES, V. C., FAUDUET, H., PORTE, C., DELACROIX, A., 2003. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 105, 121-142.
  • TIAN, Y., WU, M., LIN, X., HUANG, P., HUANG, Y., 2011. Synthesis of magnetic wheat straw for arsenic adsorption. J. Hazard. Mater. 193, 10-16.
  • TOLEDO, T. V., BELLATO, C. R., ROSÁRIO, R. H. D., MARQUES NETO, J. D. O., 2011. Adsorção de arsênio (V) pelo compósito magnético hidrotalcita: óxido de ferro. Quím. Nova. 34, 561-567.
  • VIDAL, M. F., 2021. Produção de laranja na área de atuação do BNB. Caderno Setorial ETENE; Banco do Nordeste do Brasil: Fortaleza, Brazil, 198, 1–14.
  • WANG, J., ZHENG, Y., WANG, A., 2012. Effect of kapok fiber treated with various solvents on oil absorbency. Ind. Crop. Prod. 40, 178-184.
  • WANG, S., GAO, B., LI, Y., CREAMER, A. E., HE, F., 2017. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. J. Hazardous Mater. 322 (Part A), 172–181.
  • WANG, S., GAO, B., ZIMMERMAN, A. R., LI, Y., MA, L., HARRIS, W. G., MIGLIACCIO, K. W., 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour. Technol. 175, 391–395.
  • WARWICK, M., MARCELO, C., MARCELO, C., SHAW, J., QAYYUM, R., 2021. The relationship between chronic arsenic exposure and body measures among US adults: National Health and Nutrition Examination Survey 2009-2016. J. Trace Elem. Med. Biol. 67, 126771.
  • WELHAM, N. J., MALATT, K. A., VUKCEVIC, S., 2000. The stability of iron phases presently used for disposal from metallurgical systems—A review. Miner. Eng. 13, 911-931.
  • WHO, World Health Organization, 2001. Environmental Health Criteria 224: Arsenic and arsenic compounds Geneve. Available from: https://www.inchem.org/documents/ehc/ehc/ehc224.htm. Accessed January 15, 2024.
  • WHO, World Health Organization, 2023. Arsenic [Online]. Geneve. Available from: https://www.who.int/newsroom/fact-sheets/detail/arsenic. Accessed May 13, 2023.
  • YUAN, Z., ZHANG, D., WANG, S., XU, L., WANG, K., SONG, Y., XIAO, F., JIA, Y., 2016. Effect of hydroquinoneinduced iron reduction on the stability of scorodite and arsenic mobilization. Hydrometallurgy. 164, 228-237.
  • ZHANG, M., GAO, B., 2013. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem. Eng. J. 226, 286–292.
  • ZIGLIO, B. R., BEZERRA, J. R. M. V., BRANCO, I. G., BASTOS, R., RIGO, M., 2007. Elaboração de pães com adição de farinha de sabugo de milho. Rev. Ciências Exatas e Nat. 9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f15e9a88-aa7a-4130-98e4-2c5d1611b331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.