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ABSTRACT

In the paper, there has been constructed such a non-classical Bittner operational calculus model, in
which the derivative is understood as a central difference D, {x(k)}:={x(k+n)—x(k—n)}. The discussed
model has been generalized by considering the operation D, ,{x(k)}:={x(k+n)—bx(k—n)}, where
beC\ {0]. In the D -difference model exponential-trigonometric and hyperbolic Fibonacci sequences
have been introduced.
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INTRODUCTION

From the integral calculus fundamental theorems [1] it follows that for all
functions {f(#)} € C%[a, b],R), {x(t)} € C'([a, b],R) and for each t,1; € [a, b] holds
the below:

t

c% ff(r) dr = f(1), fx'(‘r) dt = x(1) — x(1y). (1D

fo

Hence, if
S{x0} = 'O}, Tolf0)} = {ff(?)a'f}, S0} = {x (O} =, = {x(10)},  (2)

then on the basis of (1) we get
STfo = f! T.f()S-x =X - Sfuxa (3)

where f = {f(D}, x = {x(D}.

In view of the properties (3), the operations (2) are a classic example of the
so-called Bittner operational calculus [2-5]. Namely, we say that the system

!
d
(CO(Ia! b]: R)s Cl([aa b]a R)s a, fs |I:i‘{]9 t[} € Ias b])
fo

is a continuous model (representation) of this calculus with the ordinary derivative
S :=d/dt.

In the difference calculus [7, 10, 12], to the derivative

dx(n) lim dpx(t)

(1) = = ,
¥ () dt =0 dpt

where

dpx(t) = x(r + h) — x(1),

1 {f(r)} denotes the symbol of a function f,ie. f = {f(i)}, whereas f(f) means the value
of the function { f(r)} for an argument . This denotation is derived from J. Mikusinski [15].
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An operational calculus model for the central difference...

there corresponds a forward difference
Ax(k) == x(k+ 1) = x(k).
In [6] there have been considered operations S, Ty, sg, Where kg € Ny :=
W U {012, which are determined on a linear space C(Ny,[R) of real sequences

x = {x(k)}rery, with the following formulas
k-1 ko—1

Sx=Ax, Tyx:= {Z x(i) — Z x(i)}, Sk X 1= {x(ko)}.

i=0 i=0
They form a discrete model of the Bittner operational calculus, because they

possess properties analogical to (3), that is

STix=x, T,Sx=x—51,x
th_

A generalization of the above representation is a model with § as an n

order (n € M) forward difference

Sx=Ax = {x(k+n)— x(k)},

which was introduced in [22].
A generalization of the ordinary derivative x'(z) is the Schwarz derivative

x%(1), also known as a symmetric derivative [14]. It is defined by the formula

’ . 5}' JC(I)
x50 = fim ===

where
opx(t) := x(t + h) — x(t — h).

If there exists x(¢), then there also exists x}(¢) and x'(¥) = x(r). Moreover,
e.g. for x(z) := |t|we have x(0) = 0, while x"(0)) does not exist [20].

In numerical methods, the symmetric difference ¢y, is applied to the approx-
imation of the ordinary derivative x'(¢) [13]. Namely, if {x(¢)} € CB([a, b],R), then

X' = 6}’2);5[) .

2 ¥ denotes a set of natural numbers.
41
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Likewise, for {x(1)} € C°([a, b],R) we have

, 8px(1) — Sopx(1)
x ()~ 12h

In the calculus of differences, similarly as before, to the symmetric differ-
ence &y, there corresponds a central difference

Dx(k) = Dyx(k) == xtk + 1) — x(k = 1).

In this paper, we will construct such a discrete model of the Bittner opera-
tional calculus, in which the derivative S will be understood as an operation

D {x(k)} ={xtk+n)—xtk—n)}, nelN (4)

determined on the space of two-sided sequences, i.e. if k € Z3. We will determine
the operations 7}, and sy, where ky € Z in such a way that the relations (3) are
fulfilled.

FOUNDATIONS OF THE NON-CLASSICAL BITTNER OPERATIONAL CALCULUS

The Bittner operational calculus is a system
COL’, L', S, Ty, 54, 0%, (5)

where 1.V and L' are linear spaces (over the same scalar field /") such that Z.! ¢ "
A linear operation § : L' — [0 (denoted as S € :.E{’(L',LO)), called a derivative, is
a surjection. Moreover, Q is a set of indices ¢ for the operations 7; € L(L°, LY and
5q € Z(L', L")y such that ST, f=f.f¢€ L’ and sqx=x—-TySx,x € L. T,and s, are
called integrals and limit conditions, respectively. The kernel of S, i.e. Ker S is called
a set of constants for the derivative S. The limit conditions s, are projections of L!
onto the subspace Ker S.

By means of induction, we determine a sequence of spaces L",n € N in
such a way that

L':={xel™ :Sxer").

3 7 denotes a set of integer numbers.
4 The abbreviation C(? is derived from the French calcul opératoire (operational calculus).
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An operational calculus model for the central difference...

Then
.cl'c'c...cllcl’
and
sHLmy =Ln,
where

L") 358" :=5080...08, meNy, nel.
—_—

n—times

A MODEL WITH THE 2x#T™-ORDER CENTRAL DIFFERENCE

Let C be a set of complex numbers. What is more, let C(Z, C) be a linear
space of two-sided complex sequences x = {x(k)}rcz with usual sequences addition
and sequences multiplication by complexes.

The operation (4), determined on C(Z, C), will be called the 2n'"-order cen-
tral difference, where n is a given natural number.

Let us notice that any element ¢ € Ker D,, is a 2n-periodic sequence, since
for each k € Z we have

clk+n)—clk—n) =0 ck +2n) = c(k).

Then, for any sequence ¢ € Ker D, there exist numbers ag, a;,...,a2,1 € C
such that
k

c= {aosﬁ +ag) +--+ azn_la‘;‘n_] ,
where
€0, €1y v+ Ep-1 (6)
are 2nth roots of unity, i.e.

x . in o
arzcosj—+1smj—, je0,2n— 15,
J n n

while ‘i’ denotes the imaginary unit.

50,2n—1:=1{0,1,....2n - 1}.
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In what follows, we will use the below properties of the sequence (6):

81;4.2[" = g";, j€0,2n-1,k, €€z,

g +el+...+5 =0, m#2nlmeZnelN,
We will prove the following

Theorem. The system (5), where x = {x(k)} € I° = L' := C(Z,C), ko = q €
Q=7 and

Sx:={xtk+n) — x(tk—n)}, (7)
1 2n—-1 ko+n-1
~3n Z Z a"f”ﬂ x(i) for k <k
T J=0  i=k+n
Tpo X = 0 for k=ko |, keZ, (8)
1 2n—1 k+n-1
P Z Z F,T"_’x(i) for k> ko
j=0 i=ko+n
1 2n-1 kn+2n71 )
SioX 1= { o» Z gk x(i)} 9)
J=0 i=ko

forms a discrete model of the Bittner operational calculus®.
Proof. It is obvious that the operations (7)-(9) are linear. Let {y(k)} := Ty, { x(k)}.
Then, for k = ks we obtain

S{yU k=k, = {ylko + n) — y(ko — n)}

2n-1 ko+2n-1 2n—1 ko+n—1

1 P o
(ol X Aeeg X ) 4ol
" J=0  i=kp+n n =0 i=ko
1 2n—1 ko+2n-1
— ) ko—i o+
—{2HZ Z € x(l)}
J=0 i=kp
k()+2}17] ) ) »
={x(k0)+% Z (ggﬂ"+g’;°"+---+g’§;j’l)x(.i)}:{x(k)n,(:,m. (10)
i=kp+1

6 Given the definition of integrals T;,, we assume that Zf‘iy):: f(iy:=0.
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For k < kpand k + n = kg, i.e. k = kyp — n, we get in turn

S{y(k)} = {y(k + n) — y(k — n)} = {y(ko) — y(ko — 2n)}

2n—1 kp+n-1

3 1 ko—n—i -
= {O+ o Z Z & x(z)}
j=0 i=kp—n
ko+n—1
={atko=mr o= DT (T T ) 3 = (ath - )
i=kg—n+1

Therefore,
S{(k) = (xko — m)), thatis S {y(k)) = (x(k).

For k < kpand k + n < ky, i.e. k < kp — n, we have

S{y(k)} = {y(k + n) — y(k —n)}

2n—1 kg+n—1 2n—1 ko+n—1

:{iz Z k.'x(z)*—z Z "-’x(t)}
j=0  i=k j=0 i=k+2n
1 —1 k+2n-1 _
= {2— Z > x(i)}. (11)
j=0 i=k

Hence, similarly as in (10), we conclude that S {v(k)} = {x(k)}.

Ifk < kyand k +n > ko, i.e. ko — n < k < ky, we getin turn

S{yk)} = {ytk + n) — y(k — n)}

1 2n—1 k+2n-1 . 2n—1 ko+n-1 e
:{2_:12 Z : x(z)+—Z Z : x(t)}
J=0  i=kp+n
1 2n—=1 k+2n-1 ‘
= {5 Zg Z; &1 ().
j=0 =

So, by analogy to (11), we have S{y(k)} = {x(k)}.

Ifk > kgand k — n = ko, i.e. k = kg + n, then
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S{y(k)} = {y(k + n) — y(k — n)} = {y(ko + 2n) — y(ko)}

2n—1 ko+3n-1

{2 Z Z k0+n IX(I) 0}
n j=0 i=kp+n
ko+3n—1 )
={athotm 5 DT (T AT ) 3D = (ath + ),
i=ko+n+1

that is S {y(k)} = {x(k)}.
For k > kpand k — n > kg, i.e. k > ko + n, we obtain

S{y(k)} = {y(k + n) — y(k — n)}

1 2n—1 k+2n-1 1 2n—-1 k-1
_ k=i oo T k=i _¢»
B {2n Z Z € i) 2n Z Z € x(i)}
Jj=0  i=ko+n J=0 i=kg+n

2n—-1 k+2n-1
k—i
{21’1 Z Z / X(I)}
which, similarly as in (11), also means that S {y(k)} = {x(k)}.

Lastly, if k > kyand k — n < kg, i.e. kg < k < ko + n, then
S{y(k)} = {y(k + n) — y(k — n)}

1 2n—1 k+2n-1 . 2n—1 ko+n-1 e
:{2_:12 Z : x(z)+—Z Z : x(t)}
J=0  i=kp+n
| o) ke 2nel o
:{%Z; Z:; & x(t)}:{x(k)}.
Jj= i=

Finally, we can conclude that the property S T, x = x is fulfilled.

Let {f(k)} := S{x(k)} = {x(k + n) — x(k — n)}. Therefore, for k < ky we get

1 2n-1 ko+n—1 ‘
TSR = Tl o) = {-5- D% > &5 i)
(= R et
1 2n—1 kp+n—1 ko+n—1
:{2_2[ Z éf+n1 ( n)_ Z r'jc+n1x(l+n)]}
& Jj=0  i=k+n i=k+n
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2n—-1 ko-1 k+2n—1

{2?1 Z[ Z K= (i) + Zk: Sffix(i)
i= i=ko
k+2n-1 ko+2n-1
I AF ORI F O]
i=ko i=k+2n
2n—1 k+2n—1 2n—1 ko+2n—1
k! k=i o+
L3S ) (43S )

Hence, on the basis of (11), we eventually obtain

2n—1 ko+2n-1
TioS 1x(k)} = x%ﬂ—%—}j > *mm}:u@nﬂ%uw»
j=0 i=ko
Likewise, if k > kg, then
2n—1 k+n-1
TS ) = Tl f) = {5 >0 3 & 1o}
J=0 i=kp+n
1 2n—=1 k+n-1 k+n—1
{5 QL 2 Aaien= 3 -
J=0  i=ko+n i=ko+n
1 2n—1 kp+2n-1 ‘ k+2n-1 .
={_Z[ Do+ Y
2n =0 i=k i=ko12n
k—1 ko+2n—1
SO AECEEY sji-fx(z‘))]}
i=kq i=k
1 2n—1 k+2n-1 2n—1 ko+2n—1
={ ;; Z; i x()} - {2, Z Zk] 7 2l = (300 — st )

Therefore, the property 7j,S x = x — sy, x is also fulfilled. O

Since for k € ko + 1,ko + 2n — 1 we have

k+n—1
Z (Fk+n i gl](+n—r Foeeet Flé;:f]_r) =0,

i=kg+n

then, from the definition (8) of integrals T}, we get the following
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Corollary 1. If {y(k)} := Ty, {x(k)}, then
yk)=0 for kekoko+2n—1.

Corollary 2. The numbers x(ky), x(ko + 1), ..., x(ko + 2n — 1) form a cycle of
the 2n-periodic sequence {c(k)) = sy, {x(k)), i.e.

ck)=clk+2n) =x(k), kekyko+2n-1,0cZ.
Moreover, sy, Ti,{x(k)} = {0} and sy, {c(k)} = {c(k)).

Example. Using the Mathematica® program, we will list the terms of the
sequence {y(k)} := Ty, {x(k)} for k € =22, 19 in the case when n = 2 and k; = -2. By
means of (8) we obtain:

k (k) k yk)

=22 —x(=20) — x(—16) — x(—=12) — x(—=8) — x(—4) -1 0

=21 =x(=19) = x(=15) — x(=11) = x(=7) — x(-3) 0 0

=20 —x(—18) — x(—14) — x(=10) — x(—6) — x(-2) 1 0

19 —x(=17) = x(—13) — x(-9) — x(=5) — x(-1) 2 x(0)

—18  —x(—16) — x(—12) — x(—8) — x(—4) 3 x(1)

=17  —x(—15) = x(=11) = x(=7) — x(=3) 4 x(2)

—-16  —x(—14) — x(—=10) — x(—6) — x(-2) 5 x(3)

15 —=x(—13) = 2(=9) — x(-5) — x(-1) 6 x(0)+ x(4)

14 —x(=12) — x(-8) — x(—4) 7 x(1)+ x(5)

=13 —x(—11) = x(=7) = x(=3) 8 x(2)+ x(6)

=12 —x(=10) = x(=6) — x(-2) 9 x(3)+ x(7)

=11 —x(=9) — x(=5) — x(—1) 10 x(0) + x(4) + x(8)

—-10  —x(—8) — x(—4) I x(1)+ x(5) + x(9)
-9 —x(=7) - x(-3) 12 x(2) + x(6) + x(10)
-8 —x(—6) — x(-2) 13 x(3)+ x(7)+ x(11)
-7 —x(=5)—x(-1) 14 x(0)+ x(4) + x(8) + x(12)
-6 —x(—-4) 15 x(1)+ x(5) + x(9) + x(13)
-5 —x(=3) 16 x(2) + x(6) + x(10) + x(14)
-4 —x(-2) 17 x(3)+ x(7) + x(11) + x(15)
-3 —x(-1 18 x(0) + x(4) + x(8) + x(12) + x(16)
-2 0 19 x(1)+ x(5) + x(9) + x(13) + x(17)

A CERTAIN GENERALIZATION

The operation
Splx(k)} = {x(k + n) — bx(k — n)}, (12)

where {x(k)} e I° = L' := C(Z,C),b € C\ {0}, is a generalization of the central
difference (7).

48 Scientific Journal of PNA — Zeszyty Naukowe AMW



An operational calculus model for the central difference...

(12) will be called a 2nt"-order central difference with the base b.

While constructing an operational calculus model corresponding to the de-
rivative (12), we will use the method of solving the equation x(k + 1) — b(k)x(k)= f(k)
described in [12], as well as the following auxiliary theorems:

Lemma 1 (Th. 3 [5]). An abstract differential equation

Sx=f, fel’ xel
with the limit condition
84X = X4, Xoq € Ker§
has exactly one solution
x=x0q+Tyf

Lemma 2 (Th. 4 [5]). With a given derivative S € £ (L', L"), the projection
54 € ZL(L', Ker S) determines the integral T, € EAIRNA ) from the condition

x=T,f ifandonlyif Sx= f, s;x=0.
Moreover, the projection s, is a limit condition corresponding to the integral T,,.
One of the elements of Ker S, is the sequence
e(k) = b%, kel
Then
e(k+n)=belk—n), keZ
Let us consider the following difference equation
Splxti} = {f ()},

ie.
xtk +n)—bxtk—n)= fk), keZ. (13)

Hence, we have

x(k + n) B x(k—n)  f(k)
elk+n) elk—n) ek+n)

keZ,

so
vk +n)—ylk—n)=gk), keZ, (14)
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where

ey =29 ez (15)

(0] _
(k) ~elk+n)

Toek)
The equation (14) can be presented in the form of

Siytot = {go)}, (16)

where § = D, is the operation (7).

From Lemma 1 it follows that the solution of the equation (16) is a sequence
()} = sy ly(k)} + Ty {g (R},

where T}, and s, are operations (8) and (9).

From (15) we get x(k) = e(k) y(k), k € Z. Finally,

(x(k)) = [e(k)]sko{%} + {e(k)JTko{e(ff)n)} (17)
is a solution of (13).
If
@) = sk{%}
then {c(k)} € Ker S, thus
ck+n)—-ck-n=0, keZ

Let

St (R)} = [e(k)}sko{%}, ko€ Q=7 (x(k)} e L. (18)

Therefore, for each k € Z we obtain
Spspigx(k) = e(k + n)c(k + n) — be(k —n)c(k — n)
=elk+n)ck+n —ck—-n)=ek+n)-0=0,

that is sp, € £ (L', Ker S;). Moreover, since s, {c(k)} = {¢(k)}, then for each k € Z

we have

_ kyc(k
52 30) = 5y, [e(IER)] = e(k)sko[e(ezzg )]

= e(k)sg,c(k) = e(k)c(k) = sp g, x(k).
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Finally, s, is a projection of L' onto Ker S}, for each k; € Z. From Lemma 2
it follows that the projection s, determines an integral T, i, from the formula (17).

Namely,

J(k) }
etk +n))

What is more, sp4, is a limit condition corresponding to the integral (19).

Ty gt f(R)} = {e(k)}Tko{ Q.{fkyel. (19)

Hence, we arrive at the

Corollary 3. The system (12), (18), (19) forms a discrete model of the Bittner
operational calculus

CO(C(Z’ C)! C(Z9 (C)$ Sbs T}J,!‘C()s Sb,}'\'[), Z) (20)

th

In particular, to the derivative S = %S_] understood as a 2»n'"*-order central

mean

x(k—n)+ x(k + n)}

S} = M{x(k) = { :

there correspond the below integrals and limit conditions

ko = 2T-1kgs Sk = S—1ko-

THE A-FIBONACCI SEQUENCES

A special case of the 2nth-order central difference is a derivative
Sx=Dyx={xtk+1)—x(k— 1)}, (21)

to which, in line with Theorem 1 (cf. [21]), there correspond the following integrals

ko
— Z [1— (=D ]x(i) for k < ko
i=k+1
Tyyx = 0 for k=ky , keZ (22)
k
1
Z [1— (=D x) for k> ky
f=k|}+1
and limit conditions
1 1 _
St X = {E[x(ko) + x(ko + D] + E(—l)" k0 [x(ko) — x(ko + 1) (23)
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Let C(Z,R) be a space of two-sided real sequences. For x,y € C(Z,R) and
z:=x+yi,wedefine Sz := Sx + i Sy. Similarly, we determine T,z and sy, z.

A sequence z = {z(k)}, which is a solution of the problem

{Sz=/lz, AeC ’ (24)

spz=c, ceKerS§

will be called an exponential element (with 4 exponent) corresponding to the deriva-
tive (21)7 (cf. [5]).

This element is determined uniquely, because the only solution of the problem
(24)forc =0isz=0.

Let us consider such a case of (24), in which the limit condition for ky = 0 is

induced by the initial conditions
20)=0, «1)=1.
Then, the problem (24) will take the form of

{dk+n—dk—n=ﬂdm

SQZ(]{):%[I_(_I)k] , kEZ

and for A # +2i has a solution given by the A -Binet formula

Pk _ ok
Wy =2 ez, (25)
D) —
where
A+ VA2 +4 A- VA2 +4
D, = — 5 wa = — 5

The solution (25) is called a A -Fibonacci sequence.

Real .1-Fibonacci sequences for A € [,y and k € Z were already considered
by Gazalé [9] and Stakhov [18], while for A € I and & € Iy — by Falcén and Plaza [8].

The number sequence {@;},cx was called a family of metallic means (pro-
portions) by de Spinadel in [16, 17]. For A = 1,2, 3 the proportions are called golden,
silver and bronze, respectively.

7 By analogy to the exponential function {et=7

tive § :=d/dt.

¢} corresponding to the ordinary deriva-
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Let A := a + Bi, where a” + 82 > 0. By separating real and imaginary parts

in the problem (24), we obtain a system of equations

Sx=ax-By
{ Sy=Bx+ay (26)
with limit conditions
sox =c¢, spy =0, (27)

where ¢ = {3[ 1 - (=D} ]).

From (26), (27) it follows that the sequences x.,y are the solutions of the

equation
(S —al)* + B |u = 08 (28)

with the corresponding limit conditions

sox =c, sopSx=ac (29)

soy = 0,505y =Bc. (30)
Let us denote these solutions as

x = {Exp(@)Cos (B)F(k)}, y:={Exp(a@)Sin(8)F(k))
and let us call them exponential-trigonometric Fibonacci sequences.
Likewise, let
z=x+yi = (Exp(a + 81)F(k)}

denote an {« + B1i)-Fibonacci sequence. This sequence is an exponential element

with the exponent A = @ + 81 and it corresponds to the central difference (21).
Hence, we get the Euler-Fibonacci formula (cf. [5])

Exp(a + Bi)F(k) = Exp(a)Cos (B)F(k) + i Exp (@)Sin (B)F(k), ke Z, (31)
which is an analogon of the classic Euler formula.

We will use the equivalent notations

8 [ is the identity operation defined on L? = C(Z, R).
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Exp F(k) = Exp (1)F(k),
Exp Sin £ (k) = Exp (1)Sin (1) F(k),
Exp Cos F(k) = Exp (1)Cos (1)F(k),
Sin F(k) = Exp (0)Sin (1) F(k),
Cos F(k) = Exp(0)Cos (1)F(k),
whereby the sequences
{Cos F(k)}, {Sin F(k)}

will be called a Fibonacci cosine and sine, respectively.

By means of {Exp(A)F(k)}, we can also determine the below hyperbolic
Fibonacci sequences (cosine and sine)

Exp ()F(k) + Exp (=) F(k)

Cosh F(k) := 5
, kel
. 2
Then, using the Binet formula (25), we obtain
0 for k=2¢
Con = { chFsk) for k=20+1
, ez,
: _ | shFs(k) for k=2¢
SmhF(k)_{O for k—2r4l
where
wEso = TP r = TP
chFs(k) := ——=—, shFs(k) := , ke
V5 V5

are so-called symmetric hyperbolic Fibonacci (cosine and sine) sequences, introduced
by Stakhov and Rozin in [19] (see also [18]).

Then, we have
F(k) = Sinh F(k) + Cosh F(k), ke Z,

where {F(k)} is a classic two-sided 1-Fibonacci sequence,

whereby F(-k) = (=1)**'F(k), k € N:
k |... -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 71..
F(k)|... 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 ...

54 Scientific Journal of PNA — Zeszyty Naukowe AMW



An operational calculus model for the central difference...

We will now discuss a special case of .t -Fibonacci sequences, when 1:=1+1i.
From (28)-(30) it follows that x = {Exp Cos F(k)} and v = {Exp Sin F(k)} are solu-
tions of the homogeneous 4th-order difference equation
wk +2) = 2utk + 1)+ 2utk— D+ uwk-2)=0, keZ
with the respective initial conditions
x(-1)=1,x0)=0,x(1)=1,x2)=1
y(=1)=0,y(0) = 0,y(1) = 0,y2) = 1.

We can solve the above problems using Mathematica®. By means of the RSolve
command, after arranging the obtained results, we eventually get

V2= (PR -y + V2T (P -y

Exp Cos F(k) = 32
xp Cos F(k) i (32)
1/_2 . I«:_yﬂc ,l_z_' k_gpk
Exp Sin F(k) = MR TSV 1 Wy 2), (33)
210

where k € Z and
I 1 1 I 1 1
Pilao=|lzx i)+ 4/l £<i =z xci|—qflEZ1.
L2 (2 21) 31 Y (2 21) 2!

By using Mathematica®, we can also determine any terms of the sequences
(32), (33). The below tables pertain to the range k € —10, 12:

k ... -10 9 -8 -7 -6 -5 -4 -3 -2 -1 0
ExpCosF(k) | ... 39 —43 32 -19 9 -3 0 1 -1 1 0
k |1 2 3 4 5 6 7 8 9 10 11 12

ExpCosF() | 1 1 1 0 -3 —9 —-19 -32 —43 -39 5 128
k ... -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
Exp Sin F(k) \ .. 87 -3 8 4 -7 6 -4 2 -1 00
k |1 2 3 4 5 6 7 8 9 10 11 12

ExpSinF(k)‘() 1 2 4 6 7 4 -8 -36 -87 -162 -244
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It is also worth noticing that Exp Cos F(k) and Exp Sin F(k) for k € Ny are
presented in the OEIS®? database as sequences A143056 and A272665.

100} 200}

0 /\
-50) o FAN . -

U A B
=100

- 100}
—150

—200 =200

ExpCos F(1)
ExpSin F(1)

=10 -5 0 5 10 -10 =5 0 5 10
1 1

Fig. 1. Graphs of Fibonacci exponential-trigonometric functions and sequences

If we apply the Re, ComplexExpand and FullSimplify Mathematica® commands to
the formulas (32), (33), then, after arranging the obtained results, we get the men-
tioned sequences in real forms. Namely,

1 k 1
ExpCos F(k) = —— [ﬁ(fi—"l + \/(?1) 005(5 arc cot(2) — karc tan( o ))

245

- A /((b] - \/a)k cos(% arccot(2) — k(ﬂ' —arc tan( (131‘3 )))]
Exp Sin F(k) = l [\} (@1 - \/(D_l)k sin(% arc cot(2) — k (r — arc tan (/&7 )))]

2

&

— (@1 + \/El)k sin( 1

arc cot(2) — k arc tan ( @3 ))]

] =

where k € Z.
A classic logarithmic spiral in a complex plane is a graph of the function
Z(I) — e((l’+,8i )f.

On the basis of the Euler-Fibonacci formula (31), the (1 + i)-Fibonacci
numbers can be also interpreted as complex plane points

7 .= (Exp Cos F(k), Exp Sin F(k)), keZ,

9 OEIS® — The On-Line Encyclopedia of Integer Sequences®, https://oeis.org/.
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lying on the (1 + i)-Fibonacci spiral (fig. 2) with a parametric description

x(t) := ExpCos F(), y(r):=ExpSinF(s), teR.

o

wn

| S

N

ExpSin F(r)
i

ExpSin F(r)
s

%)

-5 0 5 10 -8 -6 —4 =2 0
ExpCos F(1), 10 ExpCos F(t), t=0

Fig. 2. Fibonacci spiral and (1 + i)-Fibonacci numbers

The trigonometric Fibonacci sequences x = {Cos F(k)} and y = {Sin F(k)}

are obtained from (28)-(30) for & = 0 and 8 = |, i.e. for A := i. Thus, x and y fulfil
the equation

utk +2) — u(k) + utk—2) =0, keZ

and initial conditions

x(-1)=1x(0)=0,x(1)=1,x(2) =0
YD =000 =0,y =0,y2)=1"

taking the forms of

Cos F(k) = \%[cos(%) - cos(%)] = \% sin(k—;) sin(];—n) (34)
, keZ.
Sin F(k) = %[sin(%ﬂ) - sin(%)] = —% sin(l;—n)cos(%r) (35)
It is easy to verify that
Cos F(=k) = Cos F(k) = —Cos F(k + 6)
Sin F(—=k) = =Sin F(k) = Sin F(k + 6) , keZ.

Cos F(k + 3) = =Sin F(k), Sin F(k + 3) = Cos F(k)
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We also have
Cos F(k +12) = Cos F(k), SinF(k+12)=SinF(k), keZ.

Thus, the sequences (34), (35) are 12-periodic. The following tables pre-
sent their cycles, i.e. values for k € 0, 11:

k 0O 1 2 3 4 5 6 7 8 9 10 11

CosF(k) |0 1 0 O O -1 0 -1 0 O O 1

k 0O 1 2 3 4 5 6 7 8 9 10 11

SamF(k)|]0O 01 01 0 0 0 -1 0 -1 0
1.0 1.0]
0.5 0.5]

U/\ [\U Uﬂ /\V e U/\ V/\ i

—0.5 —0.5]
-1.0 —1.0]

=10 =5 0 5 10 =10 -5 0 5 10
¢ 1

Fig. 3. Graphs of Fibonacci trigonometric functions and sequences

The sequence Cos F(k), k € Ny can be found in OEIS® under A110161.
Fig. 4 presents a graph of the Fibonacci circle

x(#) := Cos F(r), y(t):=SinF(t), te][0,12).

1.0)

Sin F(1)

0.0

-0.5]

-1.0 =0.5 0.0 0.5 1.0
Cos F(1)

Fig. 4. Fibonacci circle
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Using (34) and (35), we obtain the Fibonacci trigonometric identity

Cos’F(k) + Sin*F(k) = F(k) (mod 2), keZ,
where F(k) (mod 2) = % Sinz(%”), k € Z is a 3-periodic sequencel0

0L 1L,0, 1, 1,011,
[t is not difficult to verify that
S{Cos F(k)} = —{Sin F(k)}, S{Sin F(k)} = {Cos F(k)},

where § = D, is the central difference (21).
From (27) we have

1 :
so{Cos F(k)} = {5(1 - (—l)f‘}, So{Sin F(k)} = {0},

where s§q is the limit condition (23) for &k, = 0.

From (36) and (37) we get in turn

To{Cos F(k)} = {Sin F(k)}, To{Sin F(k)} = —{Cos F(k)} + {%(l - (—l)k},

where Ty is the integral (22) for ky = 0.
The unilateral Z-transform for one-sided sequences

x ={Cos F()kery, ¥ = {Sin F(k)}een,

is equal to

-z 2

Xg)=—7—, Y@= —-r—r0,
(@) A-72+1 @) A-2+1

respectively. Therefore,
1 1
Go(2) = X(g) = -X(z) and G(z):= Y(z) = Y(2)

are generating functions of these sequences. Hence

3 (o]
-7 +z k
Ge@) = 55— =y CosF(k
@ d-2+l L osFk)z
and
G,(z) = 2 f Sin F(k) 2
' -2 +1 P '

10 It is a sequence A011655 for k € N (see also [22]).
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In both cases the denominator
Wi(z) = -2+

is a 12th-cyclotomic polynomial, i.e. W(z) = P12(z), where

Py o= [ |- )

jGAn

and &; := Coszi":l+ i sinz%,An ={jel,n: (jn)=1).

(b, 2, 2n)-BONACCI SEQUENCES

A two-sided sequence z = {z(k)} € C(Z, C), satisfying the equation
Z2k+n)—-bztk—n)=Azk), b,A1eC\{0}
as well as the initial conditions
2(ko) = ciyo 2(ko + 1) = Chyi1y .- 2lko + 2n — 1) = crpy2n-1
will be called a (b, A, 2n)-Bonacci sequence.

In the operational calculus model (20) it is an exponential sequence ful-
filling the equation

Spz=4Az
and the limit condition
X 2 kf.+2n—1fj{_i o
e TS )

=0 i=ko
In [11], Kalman and Mena considered one-sided (b, A, 2)-Bonacci sequences,
when kp = 0and b, 4 € R\ {0}.
A (1, 1,2n)-Bonacci sequence # = {F (k)}, of which 2n consecutive terms
are Fibonacci numbers

Fk)y:=Fk) = Zi_:ﬁ _ %[( 1 +2\/§)k ~ (1 —2\/5

will be called a (2n)-Fibonacci sequence.

k -
)J, ke0,2n-1

For example, a (4)-Fibonacci sequence is a solution of the equation

Fk+2)— Fk-2) = F(k) (38)

with conditions

FO=FO)=0,F)=F()=1F2)=F2)=1,F3)=F3)=2. (39)
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Using Mathematica®, we obtain a solution of the problem (38), (39):

=l (Joten(5) - JortJeo )
+(\/@Si"(k§) - W )%m(%ﬂ)]

Hence, we have

F2k) = F(k), FQk—1)= Fk+1), keZ.

The sequence 7 (k), k € Ny can be found in OFIS® under A053602:

k‘01234567891011l2l3l41516

T(k)‘01121325385 13 8 21 13 34 21
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MODEL RACHUNKU OPERATOROW
DLA ROZNICY CENTRALNE]
ORAZ WYKLADNICZO-TRYGONOMETRYCZNE
I HIPERBOLICZNE CIAGI FIBONACCIEGO

STRESZCZENIE

W artykule skonstruowano model nieklasycznego rachunku operatoréw Bittnera, w ktérym po-
chodna rozumiana jest jako réznica centralna D, {x(k)}:={x(k+n)—x(k—n)}. Dokonano uogélnienia
opracowanego modelu, rozwazajac operacje D, ,{x(k)}:=(x(k+n)—bx(k—n)}, gdzie b\ {0}. W mo-
delu z réznica D, wprowadzono wyktadniczo-trygonometryczne i hiperboliczne ciggi Fibonacciego.

Stowa kluczowe:

rachunek operatoréw, pochodna, pierwotne, warunki graniczne, réznica centralna, ciggi Fibonacciego.
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