PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pattern Recognition Methods for Detecting Voltage Sag Disturbances and Electromagnetic Interference in Smart Grids

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Environment and Electrical Engineering EEEIC (16 ; 06-08.06.2016 ; Florence, Italy)
Języki publikacji
EN
Abstrakty
EN
Identification of system disturbances, detection of them guarantees smart grids power quality (PQ) system reliability and provides long lasting life of the power system. The key goal of this study is to find the best accuracy of identification algorithm for non-stationary, non-linear power quality disturbances such as voltage sag, electromagnetic interference in smart grids. PQube, power quality and energy monitor, was used to acquire these distortions. Ensemble Empirical Mode Decomposition is used for electromagnetic interference reduction with first intrinsic mode function. Hilbert Huang Transform is used for generating instantaneous amplitude and instantaneous frequency feature of real time voltage sag power signal. Outputs of Hilbert Huang Transform is intrinsic mode functions (IMFs), instantaneous frequency (IF), and instantaneous amplitude (IA). Characteristic features are obtained from first IMFs, IF, and IA. The six features—, the mean, standard deviation,skewness, kurtosis of both IF and IA are then calculated. These features are normalized along with the inputs classifiers. The proposed power system monitoring system is able to detect power system voltage sag disturbances and capable of recognize electromagnetic interference component. In this study based on experimental studies, Hilbert Huang Transform based pattern recognition technique was used to investigate power signal to diagnose voltage sag and in power grid. Support Vector Machines and C4.5 Decision Tree were operated and their achievements were matched for precision and CPU timing. According to the analysis, decision tree algorithm without dimensionality reduction produces the best solution.
Rocznik
Strony
86--93
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Ondokuz Mayis University, Department of Electrical & Electronic Engineering, 55139, Samsun, Turkey
autor
  • Ondokuz Mayis University, Department of Electrical & Electronic Engineering, 55139, Samsun, Turkey
Bibliografia
  • [1] J. Momoh, “Smart Grid: Fundamentals of Design and Analysis”, First Edition, Institute of Electrical and Electronics Engineers, 2012.
  • [2] R. Smolenski, “Conducted Electromagnetic Interference (EMI) in Smart Grids”, Springer -Verlag London, 2012.
  • [3] S. Borlase “Smart Grids: Infrastructure, Technology, and Solutions” , CRC press, 2012.
  • [4] Report to NIST on the Smart Grids Interoperability Standarts Roadmap, EPRI, 2009.
  • [5] M. H. J. Bollen and I. Y. H. Guo, “Signal Processing of Power Quality Disturbances”, New York: Wiley, 2006.
  • [6] P. F. Ribeiro, C.A. Duque, P. M. Silveria, and A. S. Cerqueira, “ Power Systems Signal Processing for Smart Grids”. Chichester, UK: John Wiley & Sons, Inc., 2013.
  • [7] A. McEachern, “Practical Power Quality: An Update, Large Customer Conference”, Power Standards Lab, November 25, 2015.
  • [8] K.-M. Chang,“Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition”, Sensors, 10, 2010, pp. 6063 - 6080.
  • [9] N.E. Huang, Z. Shen., S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proc. Roy. Soc. London A, Vol. 454, 1998, pp. 903–995.
  • [10] Z. Wu, N.E. Huang, “A study of the characteristics of white noise using the Empirical Mode Decomposition method,” Proc. Roy. Soc. London A, 2002.
  • [11] S. Baykut, T. Akgül, S. Ergintav, “EMD – Based Analysis and Denoising of GPS Data”, IEEE 17th Signal Processing and Communications Applications Conference, Antalya, 2009.
  • [12] T. Yalcin, O. Ozgonenel, “Feature vector extraction by using empirical mode decomposition from power quality disturbances”, IEEE SIU, Fethiye, Mugla, 2012.
  • [13] O. Ozgonenel, T. Yalcin, I. Guney, U. Kurt, “A New Classification for Power Quality Events in Distribution System”, Electric Power System Research (EPSR), 95, 2013, pp. 192-199.
  • [14] Z. Wu, N.E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method”, Adv. Adapt. Data. Anal., 1, 2009, pp.1–41.
  • [15] Z. Wang, Q. Zhu, J. Kiely, R. Luxton, “Hilbert Huang transform impedance measurement data for cellular toxicity monitoring” International Conference on Networking, Sensing and Control, 2009, pp. 767-772.
  • [16] M. Uyar, S.Yildirim, M.T. Gencoglu, “An effective wavelet-based feature extraction method for classification of power quality disturbance signals”, Electr. Power Syst. Res, 78, (10), 2008, pp. 1747–1755.
  • [17] T. Nguyen, Y. Liao, “Power quality disturbance classification utilizing S-transform and binary feature matrix method”, Electr. Power Syst. Res., 79, (4), 2009, pp. 569–575
  • [18] C.N. Bhende, S. Mishra, B.K. Panigrahi, “Detection and classification of power quality disturbances using S-transform and modular neural network”, Electr. Power Syst. Res., 78, (1), 2008, pp. 122 –128.
  • [19] S. Suja, , J. Jerome, “Pattern recognition of power signal disturbances using S transform and TT transform”, Int. J. Power Energy Syst., 32, (1), 2010, pp. 37–53.
  • [20] B. Biswal, P.K. Dash, S. Mishra, “A hybrid ant colony optimization technique for power signal pattern classification”, Expert Syst Appl,38, 2011, pp. 6368–75.
  • [21] K. K. Hoong, S. P. Lam, C. Y. Chung. “An output regulation based unified power quality conditioner with Kalman filters”, IEEE Trans Ind Electron, 59 (November (11)), 2012, pp. 4248–62.
  • [22] I. H.Witten, E. Frank, “Data Mining: Pratical Machine Learning Tools and Techniques”, San Mateo, CA, USA: Morgan Kaufmann, 2005.
  • [23] M. T. Hagan, M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Trans. Neural Netw., , Nov., vol. 5, no. 6, 1994, pp. 989– 993.
  • [24] R. J. Quinlan, “C4.5: Programs for Machine Learning”, San Mateo, CA, USA, Morgan Kaufmann, vol. 1, 1993.
  • [25] S. Mishra, T. Nagwani, “A Review on Detection and Classification Methods for Power Quality Disturbances”, International Journal of Engineering Science and Computing, Volume 6, Issue No. 3, 2016.
  • [26] F. A. S. Borges, R. A. S. Fernandes, I. N. Silva, C. B. S. Silva, “Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals”, IEEE Transactions on Industrial Informatics, Vol. 12, No. 2, 2016.
  • [27] Ozgonenel O., Thomas D. W. P., Yalcin T., “Superiority of decision tree classifier on complicated cases for power system protection” , 11th International Conference on Developments in Power Systems Protection, Birmingham, UK, 2012, pp. 134–134.
  • [28] Mahela O. P. , Shaik A. G. , Gupta N., “A critical review of detection and classification of power quality events”, Renewable and Sustainable Energy Reviews, Volume 41, 2015, pp. 495–505.
  • [29] B. Schölkopf, A. Smola, K. Müller, “Nonlinear component analysis as a kernel eigenvalue problem”, Neural Computation, 10, 1998, pp. 1299–1319.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1571d87-9f97-47f1-853f-b556d51ec524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.