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Abstract— Identification of system disturbances, detection of 
them guarantees smart grids power quality (PQ) system 
reliability and provides long lasting life of the power system. The 
key goal of this study is to find the best accuracy of identification 
algorithm for non-stationary, non-linear power quality 
disturbances such as voltage sag, electromagnetic interference 
in smart grids. PQube, power quality and energy monitor, was 
used to acquire these distortions. Ensemble Empirical Mode 
Decomposition is used for electromagnetic interference 
reduction with first intrinsic mode function. Hilbert Huang 
Transform is used for generating instantaneous amplitude and 
instantaneous frequency feature of real time voltage sag power 
signal. Outputs of Hilbert Huang Transform is intrinsic mode 
functions (IMFs), instantaneous frequency (IF), and 
instantaneous amplitude (IA). Characteristic features are 
obtained from first IMFs, IF, and IA. The six  features—, the 
mean, standard deviation,skewness, kurtosis of both IF and IA 
are then calculated. These features are normalized along with 
the inputs classifiers. The proposed power system monitoring 
system is able to detect power system voltage sag disturbances 
and capable of recognize electromagnetic interference 
component. In this study based on experimental studies, Hilbert 
Huang Transform based pattern recognition technique was 
used to investigate power signal to diagnose voltage sag and in 
power grid. Support Vector Machines and C4.5 Decision Tree 
were operated and their achievements were matched for 
precision and CPU timing. According to the analysis, decision 
tree algorithm without dimensionality reduction produces the 
best solution. 
 
Index Terms— C4.5 decision trees, electromagnetic interference, 
feature extraction, hilbert huang transform, power quality 
disturbance, smart grids, support vector machines  
 

I. INTRODUCTION 
    Smart grids have been constructed structure where a 
number of control devices are used to provide reliability, 
stability and efficiency in the power generation, transmission 
and distribution. To enhance forecasting faults and risks in 
addition to ensuring protection against any possible internal 
and external threats, the new generation, smart grids, will be 
supplied with communication facilities and real time 
measurement techniques [1, 2]. The smart grid design is 
mainly based on restructuring the power industry and 
optimizing its resources. Smart Grids could optimize transfer 
capability of transmission and distribution networks to meet 
the demands for higher quality and more reliable power 

supply [1, 2]. The main benefits of the Smart Grid 
technologies include: minimized shutdown of the distributed 
generation in overload conditions, power quality 
improvement, improved voltage profile, coordinated 
restoring of the power system avoid to grid blackout [1,2,3,4]. 
 
A. Voltage Sag 

   Voltage sags are short-duration (less than 1 sec) reduction 
in voltage magnitude. This kind of disturbance is presently 
one of main power quality problems (Figure 1b.). Momentary 
increase of current has many origins in power systems such 
as energizing of transformers, short circuits, earth faults and 
starting of induction motors [5, 6]. 
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B. Electromagnetic Interference (EMI)  

         Electromagnetic interference (EMI), side-effect results of 
the power conversion and control devices processes, can 
emerge in a wide frequency range from the basic harmonic and 
inter-harmonics of the mains frequency. A rise in switching 
frequencies gives rise to the high energy obstruction, created by 
the realization of the energy conversion processes, to be shifted 
in frequency range approximately operated (9 kHz-30 MHz) 
EMI range. Moreover, a new growing power quality problem 
especially (2 kHz-150 kHz) threatened the smart grid power 
quality [7]. EMI normalized voltage signal (L1-N / phase A) 
generated with arbitrary function generator Tektronix 
AFG3022C is shown in Figure 1c [2, 6]. 

 
 
Fig. 1.  Healthy signal (1a), normalized voltage sag (1b) and EMI normalized 

voltage signal (1c) (L1-N / phase A) generated with Tektronix AFG3022C 
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    Hilbert Huang Transform method used for recognizing and 
identifying real time power quality disturbances have 
described in Section II. 

II. FEATURE EXTRACTION 

A. Emprical Mode Decomposition (EMD) 
 The algorithm [8, 9, 10] includes the steps:  
 

i. Determine all the extrema of the signal, s(t). 
ii. Find the upper and lower envelope constructed in 

step (i). (Interpolation of the extrema analyses with 
the cubic spline ) 

iii. Then, find the subtraction signal and the mean 
function of the upper and lower envelope (mean(t)), 
dif(t) = s(t)−mean(t). 

iv. Only when the iteration stops, dif(t) becomes first 
imf  c1(t) ;  or else, branch to step (i) change s(t) with 
dif(t). 

v. Find the residue signal,   res(t) = s(t)−c1(t). 
 

vi. Continue the operation from steps (i) to (vi) to attain 
second IMF, c2(t). Achieve cn(t), continue steps (i) – 
(vi) after n iterations. The routine is broken when the 
last imf (residual signal res(t)) is acquired as a 
monotonic function. 

This routine called sifting process. Finally, we get residue 
res(t), gathering of m IMF, from c1(t) to cn(t). The targeted 
signal can be expressed as: 
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we can regard res(t) as cm+1(t) [11, 12,13]. 
 
 
A. EEMD (Ensemble Empirical Mode Decomposition) 
B.  

B. Ensemble Emprical Mode Decomposition (EEMD) 
The EEMD algorithm (Fig. 2.) steps are hearunder: 
 

i. Add noise, wn(t), to target signal s1(t).  
s2(t)=s1(t)+wn(t). 

ii. Used EMD algorithm for decomposing the final 
signal s2(t). 

iii. Continue steps (i) and (ii) till the trial numbers. 
When new imf combination Cij(t) is succeeded, 
predict the ensemble mean of the last imf. The 
aimed output: 
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tn: trial numbers, i: iteration number and  j: imf scale [13,14].  

 
Fig. 2.   The representation of the EEMD algorithm 
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cj(t) is real part  and vj(t)  is imaginary part of an analytic 
signal zj(t): 
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Amplitude and phase expressed with equation (6) and (7): 
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Thus, the instantaneous frequency wj(t) was given by: 
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C. Feature Generation: Hilbert-Huang Transform 
(HHT) 

    HHT [13, 14, 15] enables the real time signal X(t) into the 
time frequency domain by merging EEMD with the Hilbert 
transform (Fig. 3.). The Hilbert transform is then 
implemented for each IMF component Cj generated with 
sifting process which is explained in Section III.A. 

 



 
 

 
Fig. 3.   Main steps of the feature generation routine with HHT 

 

III. EXPERIMENT SET UP  
     In this part of the study, PQube was installed to acquire 
measurements, firstly in basic electricity laboratory for one 
phase (L1-N) records. Secondly it was utilized in computer 
laboratory for three phases (L1-N, L2-N, L3-N) records 
which its loads are computers. HHT is used in signal 
processing part of the study for generation of Instantaneous 
Amplitude (IA) and Instantaneous Frequency (IF) features. 
They respectively generated for real time values from PQube 
one phase in basic electricity laboratory, three phases in 
computer laboratory for computers. 

A.  Real Time Basic Electricity Laboratory Measurements  
    One phase (L1-N) voltage sag (Fig. 4.)  event history 
which recorded by PQube is shown in Table I. 
 

TABLE I  

EVENT HISTORY (ONE PHASE) 

Event_Type Voltage Sag 

Event_Magnitude 60.44% 

Event_Duration_In_Seconds 0.110 

Trigger_Date 2015/11/08 

Trigger_Time T 03:05:51.687 

Trigger_Channel L1-N 

Trigger_Threshold 90.0% of nominal 

Trigger_Sample_Number 257 

Samples_Per_Cycle 128 

Microseconds_Per_Sample 156.398 

 
 
 

 
 

Fig. 4.  Power Quality Monitor with PQube voltage sag condition of signal 
(2015/11/08) 

 
Fig. 5.  illustrates that first component imf1 the noise (lowest 
magnitude and highest frequency signal) on the line (L1-N). 
Lower order of imfs means high frequency and oscillation 
higher order otherwise. 
 

 
 

Fig. 5.  IMFs for a voltage sag signal processed with EEMD  
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Fig. 6.  Stockwell Transform (ST) contours 
 

  The Stockwell Transform (ST) is developed method related 
with the Gabor Transform (GT) and Wavelet Transform 
(WT). Several works have used ST for the analysis of PQ 
disturbance because it allows location in time,  real and 
imaginary components of the spectrum [16, 17, 18, 19]. Fig. 
6. shows that ST can produce proper features for detecting 
voltage sag. Table II shows the main advantages and 
disadvantages of two signal processing methods (HHT, ST). 
 

Table II  

COMPARISON OF TWO FEATURE EXTRACTION METHOD FOR PQ 
DISTURBANCES  [25, 28] 

 HHT ST 
Advantages Appropriate for feature 

extraction of non-
linear non-stationary 

signal, generates 
perpendicular imfs  

whereby instantaneous 
amplitude and phase 

can be easily assessed 

 Maintain time and 
frequency 

representation. Good 
time-frequency 

resolution 
 
 
 

Disadvantages For narrow band 
conditions is limited, 

end effects 

Does not accomplish 
real-time requirement 

based on block 
processing, false 

harmonics 
measurement owing 

to dependency of 
frequency window 

width. 

B.  Real time Computer Laboratory measurements  
 

   For 3 phases (L1-N, L2-N, L3-N) real time processing the 
first intrinsic mode function is removed with the addition 
(superposition) of remain components to reconstruct the 
analyzed signal (Equ.  1.). Respectively, fig. 7. and fig.  8.  
show that after removing noise component normal and 
voltage sag cases. 

 
 

Fig. 7.  After removing first imf normal condition of signal 
 

 
Fig. 8. After removing first imf voltage sag condition of signal 

 
 

    Fig 8. illustrates real time computer laboratory measures 
that after reconstructing the voltage sag (rate: 86.60%- 
duration: 0.063 sec) signal, namely the first imf removing 
from the noisy component. In addition, voltage sag occurred 
on phase B-C as a result of this case different load types and 
number of computers on line. This is main vision of this 
scientific work to identify the fault on active different load 
types. 
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Fig. 9.  IA corresponding to remove first imf normal condition of signal 

 
 

 
Fig. 10.   IF corresponding to remove first imf normal condition of signal 

 

 
Fig. 11.   IA corresponding to remove first imf voltage sag condition of 

signal 
 

    The results show explicitly different pattern in Fig. 9.-
normal condition as for Fig. 11. – voltage sag condition. Also   
it is clearly shown in fig. 11. voltage sag on two phases (L2-
N, L3-N). This information will be used for evaluating active 
loads types and risk management of the grid. 

 
Fig. 12.  IF corresponding to remove first imfs voltage sag condition of 

signal 
 

    IF signal can use for separation for two cases but there is 
end effect problem that have to be solved. This is another 
future work of the study. When cubic spline fitting is 
computationally demanding, generates distortions near the 
end points. This is a technical problem that causes data 
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failures and peaks at the beginning and at the end of the 
signal. This fault will be investigated on HHT (Fig. 10. - 11.).  

C. Feature Selection 
     For diagnosis of disturbances, extracted features are 
produced from firstly EEMD method so as to classify the 
voltage sags in grid. After reconstruction signal without noisy 
part, first imf pre-processing stage. Second stage IA and IF) 
are generated by means of HHT. The statistical analysis and 
classification for identification power quality disturbances. 
The following features were extracted: mean, standard 
deviation, skewness of IA and IF. Selecting appropriate 
features of voltage sag events are highly crucial for diagnosis 
of the disturbance.  The primary schematic model consists of 
four steps as shown in Fig. 13.   
 

 
Fig. 13. Schematic model of identification of PQ disturbance 

  

IV. PQ DISTURBANCES CLASSIFICATION 
TECHNIQUES  

A. Support vector machine  
   Support Vector Machine (SVM) methods, which are 
developed by Vapnik, whereby statistical learning technique 
being the basis contributes a novel machine learning method. 
SVMs are linked supervised learning methods used for 
classification and regression [20, 21, 25, 28].  
 

B. Decision Trees  
       Decision trees are methods that utilize divide-and-
conquer approaches as structure learning by induction [22, 
23]. The C4.5 algorithm was developed by Qinlan, contains 
the generation of a tree whereby a training set, finding the 
information gain criterion to find the finest attribute/feature 
to be used at each node. Furthermore, the algorithm applies 
the post pruning approach to diminish the size of the tree and 
prohibit over fitting. C4.5 is a technique for approximating 

discrete-valued functions that is powerful tool to noisy data 
and suitable for learning distinctive statements [23, 24, 25, 
26, 27, 28].  

V. PERFORMANCES OF CLASSIFICATION ALGORITHMS AND 
DISCUSSIONS 

     To figure out the performance of the proposed power 
quality classification algorithm, a total number of 30 PQube 
Analyzer real time disturbances data were used. The PQ 
signals are divided into two categories; 20 of them were used 
for training and 10 of them were used for testing the proposed 
algorithm with shuffling the data. 
     In the light of Table III., it is concluded that for sigmoid 
kernel degree 0.01 with dimensionality reduction with 
Singular Value Decomposition (SVD) described in [29] is 
better result in terms of  CPU time (3.56 sec), and for 
polynomial kernel d=3, is also better result CPU time (3.58) 
in non linear classification SVM. Decision Tree algorithm 
has the precision of 100% and CPU time of 4.10 sec. 
Eventually, C4.5 Decision tree based method is the best and 
gives more proper outcomes than the SVM technique without 
SVD. (Note: the most proper and robust classifiers for each 
data set are showed by Red font in Table III). 

TABLE III 

PERFORMANCES OF DISTURBANCE DIAGNOSE ALGORITHMS 

Classifier Precision Time (sec) 
SVM-Linear 50% 2.35 
SVM-poly  

d=2 100% 3.75 
SVM-poly  

d=2 
preprocessing SVD (r=2) 100% 3.59 

SVM-poly  
d=3 90% 1.91 

SVM-poly  
d=3 

preprocessing SVD (r=3) 100% 3.58 
SVM-poly  

d=3 
preprocessing SVD (r=2) 60% 1.06 

SVM-RBF 
sigma =0.01 

 50% 0.36 
SVM-RBF 

sigma =0.01 
preprocessing SVD (r=3) 100% 3.56 

SVM-RBF 
sigma =1 50% 0.40 

SVM-RBF 
sigma =1 

preprocessing SVD (r=3) 50% 0.36 
DecisionTree 

C4.5 100% 4.10 
DecisionTree 

C4.5 
preprocessing SVD (r=3) 100%     4.0606 

VI. CONCLUSION 
    In this real time analysis, EEMD-HHT signal processing 
system was used for generation features of different 
characteristics IA and IF for normal condition and voltage sag 

http://www.sciencedirect.com/science/article/pii/S0957417407005982#ref_bib7
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cases. The technique reported in this study clearly 
accomplishes generation of features different for normal – 
voltage sag cases aiming that identification of smart grid 
faults. Simulations results have illustrated the capability and 
validity of the HHT. This study shows that the proposed 
approach can be easily used for detecting electromagnetic 
interference on non-stationary signals. Results of the 
experiments will be conduct for relation on three phases 
between computer numbers and voltage disturbances for 
future studies. In PQ Diagnosis part of the study, SVM and 
Decision Tree (C4.5) were operated and their results were 
match for precision and CPU time. In consequence of 
precision and timing criteria, without dimensionality 
reduction with SVD, SVM-RBF (sigma =0.01) algorithm 
presented the best solution. Results from the simulations 
clarify that the proposed method is effective in detecting non-
stationary PQ signal. For analyzing   the real time power 
quality disturbance signals and classifying them, Matlab ™ 
Toolboxes are used for simulations.  
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