PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cubic elasticity of porous materials produced by additive manufacturing: experimental analyses, numerical and mean‑field modelling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although the elastic properties of porous materials depend mainly on the volume fraction of pores, the details of pore distribution within the material representative volume are also important and may be the subject of optimisation. To study their effect, experimental analyses were performed on samples made of a polymer material with a predefined distribution of spherical voids, but with various porosities due to different pore sizes. Three types of pore distribution with cubic symmetry were considered and the results of experimental analyses were confronted with mean-field estimates and numerical calculations. The mean-field ‘cluster’ model is used in which the mutual interactions between each of the two pores in the predefined volume are considered. As a result, the geometry of pore distribution is reflected in the anisotropic effective properties. The samples were produced using a 3D printing technique and tested in the regime of small strain to assess the elastic stiffness. The digital image correlation method was used to measure material response under compression. As a reference, the solid samples were also 3D printed and tested to evaluate the polymer matrix stiffness. The anisotropy of the elastic response of porous samples related to the arrangement of voids was assessed. Young’s moduli measured for the additively manufactured samples complied satisfactorily with modelling predictions for low and moderate pore sizes, while only qualitatively for larger porosities. Thus, the low-cost additive manufacturing techniques may be considered rather as preliminary tools to prototype porous materials and test mean-field approaches, while for the quantitative and detailed model validation, more accurate additive printing techniques should be considered. Research paves the way for using these computationally efficient models in optimising the microstructure of heterogeneous materials and composites.
Rocznik
Strony
art. no. e34, 2024
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. Torquato S. Random heterogeneous materials. Microstructure and Macroscopic Properties: Springer; 2002.
  • 2. Biot MA. The theory of propagation of elastic waves in a fluid-saturated porous solid. J Acoust Soc Am. 1956;28(2):168–91.https://doi.org/10.1121/1.1908239.
  • 3. Campoli G, Borleffs MS, Yavari SA, Wauthle R, Weinans HH,Zadpoor AA. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des.2013;49:957–65. https://doi.org/10.1016/j.matdes.2013.01.071.
  • 4. Andersons JA, Kirpluks M, Stiebra L, Cabulis U. Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams. Mater Des. 2016;92:836–45. https://doi.org/10.1016/j.matdes.2015.12.122.
  • 5. Al-Maharma AY, Patil SP, Markert B. Effects of porosity on the mechanical properties of additively manufactured components: acritical review. Mater Res Express. 2020;7(12):1–27. https://doi.org/10.1088/2053-1591/abcc5d.
  • 6. Dizon JRC, Espera AH Jr, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf.2018;20:44–67. https://doi.org/10.1016/j.addma.2017.12.002.
  • 7. Moradi M, Aminzadeh A, Rahmatabadi D, Hakimi A. Experimental investigation on mechanical characterization of 3D printed PLA produced by fused deposition modeling (FDM). Mater Res Express. 2021;8(3):1–10. https:// doi. org/ 10. 1088/ 2053- 1591/abe8f3.
  • 8. Mao H, Rumpler R, Gaborit M, Göransson P, Kennedy J,O’Connor D, Trimble D, Rice H. Twist, tilt and stretch: from isometric Kelvin cells to anisotropic cellular materials. Mater Des.2020;193:1–15. https://doi.org/10.1016/j.matdes.2020.108855.
  • 9. Mao H, Rumpler R, Göransson P. A note on the linear deformations close to the boundaries of a cellular material. Mech ResCommun. 2021;111:1–7. https://doi.org/10.1016/j.mechrescom.2021.103657.
  • 10. Mueller J, Shea K. Buckling, build orientation, and scaling effects in 3D printed lattices, Materials Today. Communications.2018;17:69–75. https://doi.org/10.1016/j.mtcomm.2018.08.013.
  • 11. Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc A. 1957;241:376–96. https://doi.org/10.1098/rspa.1957.0133.
  • 12. Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials, North-Holland Elsevier 1999.
  • 13. Herve E, Zaoui A. n-layered inclusion-based micromechanical modelling. Int J Engng Sci. 1993;31:1–10. https:// doi. org/ 10.1016/0020-7225(93)90059-49.
  • 14. Cherkaoui M, Sabar H, Berveiller M. Micromechanical approach of the coated inclusion problem and applications to composite materials. J Eng Mater Technol. 1994;116:274–8. https://doi.org/10.1051/jp3:1994161.
  • 15. Capolungo L, Cherkaoui M, Qu J. On the elastic-viscoplastic behavior of nanocrystalline materials. Int J Plast. 2007;23:561–91.https://doi.org/10.1016/j.ijplas.2006.05.003.
  • 16. Duan H, Yi X, Huang Z, Wang J. A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework. Mech Mater. 2007;39:81–93. https://doi.org/10.1016/j.mechmat.2006.02.009.
  • 17. Marcadon V, Herve E, Zaoui A. Micromechanical modeling of packing and size effects in particulate composites. Int J SolidsStruct. 2007;44:8213–28. https://doi.org/10.1016/j.ijsolstr.2007.06.008.
  • 18. Majewski M, Kursa M, Holobut P, Kowalczyk-Gajewska K. Micromechanical and numerical analysis of packing and size effects in elastic particulate composites. Compos B.2017;124:158–74. https://doi.org/10.1016/j.compositesb.2017.05.004.
  • 19. Vu T-S, Tran B-V, Nguyen H-Q, Chateau X. A refined morphological representative pattern approach to the behavior of poly-disperse highly-filled inclusion-matrix composites. Int J SolidsStruct. 2023;270: 112253. https://doi.org/10.1016/j.ijsolstr.2023.112253.
  • 20. Ponte Castañeda P, Willis J. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids. 1995;43(12):1919–51. https://doi.org/10.1016/0022-5096(95)00058-Q.
  • 21. Ma H, Hu G, Huang Z. A micromechanical method for particulate composites with finite particle concentration. Mech Mater.2004;36(4):359–68. https:// doi. org/ 10. 1016/ S0167- 6636(03)00065-6.
  • 22. Li D, Hu G-K. Effective viscoelastic behavior of particulate polymer composites at finite concentration. Appl Math Mech-Engl Ed.2007;28(3):297–307. https://doi.org/10.1007/s10483-007-0303-1.
  • 23. Vilchevskaya E, Kushch V, Kachanov M, Sevostianov I. Effective properties of periodic composites: Irrelevance of one particle homogenization techniques. Mech Mater. 2021;159: 103918.https://doi.org/10.1016/j.mechmat.2021.103918.
  • 24. Sangani AS, Lu W. Elastic coefficients of composites containing spherical inclusions in a periodic array. J Mech Phys Solids.1987;35(1):1–21. https://doi.org/10.1016/0022-5096(87)90024-X.
  • 25. Rodin GJ. The overall elastic response of materials containing spherical in homogeneities. Int J Solids Struct. 1993;30(14):1849–63. https://doi.org/10.1016/0020-7683(93)90221-R.
  • 26. Nemat-Nasser S, Iwakuma T, Hejazi M. On composites with periodic structure. Mech Mater. 1982;1(3):239–67. https://doi.org/10.1016/0167-6636(82)90017-5.
  • 27. Schjødt-Thomsen J, Pyrz R. Cubic inclusion arrangement:effect on stress and effective properties. Comput Mater Sci.2005;34(2):129–39. https://doi.org/10.1016/j.commatsci.2004.12.061.
  • 28. Kushch VI, Mogilevskaya SG, Stolarski HK, Crouch SL. Evaluation of the effective elastic moduli of particulate composites basedon Maxwell’s concept of equivalent in homogeneity: microstructure-induced anisotropy. J Mech Mater Struct. 2013;8((5–7)):283–303. https://doi.org/10.2140/jomms.2013.8.283.
  • 29. Molinari A, El Mouden M. The problem of elastic inclusions at finite concentration. Int J Solids Struct. 1996;33:3131–50. https://doi.org/10.1016/0020-7683(95)00275-8.
  • 30. El Mouden M, Molinari A. Thermoelastic properties of composites containing ellipsoidal in homogeneities. J Therm Stress.2000;23:233–55. https://doi.org/10.1080/014957300280425.
  • 31. FreeCAD, FreeCAD (version 0.20). https://www.freecadweb.org/.Accessed 1 Mar 2023.
  • 32. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172–96.https://doi.org/10.1016/j.compositesb.2018.02.012.
  • 33. Nowak M, Maj M. Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: numerical procedures and results. Arch Civ MechEng. 2018;18(2):630–44. https://doi.org/10.1016/j.acme.2017.10.005.
  • 34. Musiał S, Maj M, Urbański L, Nowak M. Field analysis of energyconversion during plastic deformation of 310s stainless steel. IntJ Solids Struct. 2022;238: 111411. https://doi.org/10.1016/j.ijsolstr.2021.111411.
  • 35. Mercier S, Molinari A, El Mouden M. Thermal conductivity of composite material with coated inclusions: applications to tetragonal array of spheroids. J Appl Phys. 2000;87:3511. https://doi.org/10.1063/1.372374.
  • 36. Kowalczyk-Gajewska K, Majewski M, Mercier S, Molinari A.Mean field interaction model accounting for the spatial distribution of inclusions in elastic-viscoplastic composites. Int J Solids Struct. 2021;224: 111040. https://doi.org/10.1016/j.ijsolstr.2021.111040.
  • 37. Bieniek K, Majewski M, Holobut P, Kowalczyk-Gajewska K.Composite anisotropy induced by the spatial distribution of particles: the cluster model and numerical homogenization, submitted2023.
  • 38. Zeller R, Dederichs P. Elastic constant of polycrystals. Phys Status Solidi B. 1973;55:831–42. https://doi.org/10.1002/pssb.2220550241.
  • 39. Forte S, Vianello M. Symmetry classes for elasticity tensors. JElast. 1996;43:81–108. https://doi.org/10.1007/BF00042505.
  • 40. Kowalczyk-Gajewska K. Estimation of overall properties of random polycrystals with the use of invariant decompositions of Hooke’s tensor. Int J Solids Struct. 2012;49:3022–37. https://doi.org/10.1016/j.ijsolstr.2012.06.002.
  • 41. Benveniste Y. A new approach to the application of Mori-Tanaka’stheory in composite materials. Mech Mater. 1987;6(2):147–57.https://doi.org/10.1016/0167-6636(87)90005-6.
  • 42. Sevostianov I, Kachanov M. On some controversial issues in effective field approaches to the problem of the overall elastic properties. Mech Mater. 2014;69(1):93–105. https://doi.org/10.1016/j.mechmat.2013.09.010.
  • 43. Jiménez Segura N, Pichler BL, Hellmich C. Concentration tensors preserving elastic symmetry of multiphase composites. MechMater. 2023;178: 104555. https:// doi. org/ 10. 1016/j. mechm at.2023.104555.
  • 44. Rychlewski J. CEIIINOSSSTTUV. Mathematical structure of elastic bodies, Tech. Rep. 217, Inst. Mech. Probl. USSR Acad. Sci.,Moskva, in Russian, 1983. English Translations by A. Ziółkowski:Library of Applied Mechanics, Institute of Fundamental Technological Research, Polish Academy of Sciences, ISBN: 978-83-65550-45-3, Warsaw, 2023.
  • 45. Ostrowska-Maciejewska J, Rychlewski J. Generalized proper states for anisotropic elastic materials. Arch Mech.2001;53(4–5):501–18.
  • 46. Kouznetsova V, Brekelmans W, Baaijens F. An approach to micro-macro modeling of heterogeneous materials. Comput Mech.2001;27:37–48. https://doi.org/10.1007/s004660000212.
  • 47. Pierard O, Lorca J, Segurado J, Doghri I. Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. Int J Plast.2007;23:1041–60. https://doi.org/10.1016/j.ijplas.2006.09.003.
  • 48. Kursa M, Kowalczyk-Gajewska K, Lewandowski M, Petryk H.Elastic-plastic properties of metal matrix composites: Validation of mean-field approaches. Eur J Mech A Solids. 2018;68:53–66.https://doi.org/10.1016/j.euromechsol.2017.11.001.
  • 49. Mercier S, Kowalczyk-Gajewska K, Czarnota C. Effective behavior of composites with combined kinematic and isotropic hardening based on additive tangent Mori-Tanaka scheme. Compos BEng. 2019;174:107052. https://doi.org/10.1016/j.compositesb.2019.107052.
  • 50. Majewski M, Wichrowski M, Holobut P, Kowalczyk-Gajewska K. Shape and packing effects in particulate composites: micro-mechanical modelling and numerical verification. Arch Civ Mech Eng. 2022;22:86. https://doi.org/10.1007/s43452-022-00405-9.
  • 51. Zou R, Xia Y, Liu S, Hu P, Hou W, Hu Q, Shan C. Isotropic andanisotropic elasticity and yielding of 3D printed material. Compos B Eng. 2016;99:506–13. https://doi.org/10.1016/j.compositesb.2016.06.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f152f73b-a3bc-49cb-9076-2532df90e1ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.