PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of optical properties of infitec and active stereo stereoscopic techniques for CAVE-type virtual reality systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.
Rocznik
Strony
139--151
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12,80-233 Gdańsk, Poland
Bibliografia
  • [1] Lebiedź, J., Mazikowski, A. (2014). Launch of the Immersive 3D Visualization Laboratory. High-Speed Tracked Vehicles, 34(1), 49-56.
  • [2] Cruz-Neira., C., Sandin, D.J., DeFanti, T.A. (1992). The CAVE: A Virtual Reality Theater. HPCCV Publications, 2.
  • [3] Kuhlen, T., Hentschel, B. (2014). Quo vadis CAVE: does immersive visualization still matter? IEEE Computer Graphics and Applications, 34(5), 14-21.
  • [4] Muhanna, M.A. (2015). Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. Journal of King Saud University - Computer and Information Sciences, 27(3), 344-361.
  • [5] GBurdea, G., Coiffet, B. (2003). Virtual Reality Technology. 2nd Ed., Wiley, New York.
  • [6] Iowa State University News Service, The most realistic virtual reality room in the world, http://www.public.iastate.edu/~nscentral/news/06/may/c6update.shtml, access 02.2017.
  • [7] DeFanti, T.A., Dave, G., Sandin, D.J., Schulze, J.P., Otto, P., Girado, J., Kuester, F., Smarr, L., Rao, R. (2009). The StarCAVE, a third-generation CAVE and virtual reality OptIPortal. Future Generation Computer Systems, 25, 169-178.
  • [8] Schroder, D., Wafers, F., Pelzer, S., Rausch, D., Vorlander, M., Kuhlen, T. (2010). Virtual Reality System at RWTH Aachen University. Proc. International Symposium on Room Acoustic, ISRA 2010, Melbourne.
  • [9] Lebiedź, J., Mazikowski, M. (2014). Innovative Solutions for Immersive 3D Visualization Laboratory. Proc. of WSCG2014 Conference on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, 315-319.
  • [10] Hereld, M., Judson, I.M., Stevens, R.L. (2002). Introduction to building projection based tiled display systems. IEEE Computer Graphics and Applications, 20, 22-28.
  • [11] Hanel, C., Weyers, B., Hentschel, B., Kuhlen, T. (2016). Visual quality adjustment for volume rendering in head-tracked virtual environment. IEEE Trans. Vis. Comput. Graph., 22(4), 1472-1481.
  • [12] Szymaniak, M., Mazikowski, A., Meironke, M. (2017). Investigation of tracking systems properties in CAVE-type virtual reality systems. Conference on Photonics Applications in Astronomy, Communications, Industry and High Energy Physics Experiments, Proc. SPIE 10445, Wilga.
  • [13] Mazikowski, A. (2018). Analysis of luminance distribution uniformity in CAVE-type virtual reality systems. Opto-Electron. Rev., 26(2), 116-121.
  • [14] Lebiedź, J., Szwoch, M. (2016). Virtual Sightseeing in Immersive 3D Visualization Lab. Proc. of the Federated Conference on Computer Science and Information Systems, 8, 1641-1645.
  • [15] Fernandes, K.J., Raja , V., Eyre, J. (2003). Cybersphere: The Fully Immersive Spherical Projection System. Comm. of the ACM 2003, 46(9), 141-146.
  • [16] Medina, E., Fruland, R., Weghorst, S. (2008). Virtusphere - Walking in a Human Size VR Hamster Ball. Human factors and Ergonomics Society Annual Meeting, New York, 52(27), 2102-2106.
  • [17] Gantenberg, J., Schill, K., Zetzsche, C. (2012). Exploring Virtual Worlds in a Computerised Hamster Wheel. German Research, 34(1), 24-27.
  • [18] Garbat, P. Kujawińska, M. (2008). Visualization of 3D variable in time object based on data gathered by active measurement system. Opto-Electron. Rev., 16(1), 97-104.
  • [19] Flotyński, J., Walczak, K. (2017). Ontology-Based Representation and Modelling of Synthetic 3D Content: A State-of-the-Art Review. Computer Graphics Forum, 35(8), The Eurographics Association and John Wiley & Sons Ltd., 329-353
  • [20] Meironke, M., Mazikowski, A. (2017). Modeling of luminance distribution in CAVE-type virtual reality systems. Conference on Photonics Applications in Astronomy, Communications, Industry and High Energy Physics Experiments, Proc. SPIE 10445, Wilga.
  • [21] Christie CAVE - Cave Automatic Virtual Environment, http://www.christiedigital.com, access 10.2016.
  • [22] Horan, B., et al. (2018). Feeling Your Way Around a CAVE-Like Reconfigurable VR Syste. 11th International Conference on Human System Interaction (HSI), Gdańsk, Poland, IEEE Xplore.
  • [23] Jorke., H., Fritz, M. (2005). Infitec - a new stereoscopic visualization tool by wavelength multiplex imaging. Journal of Three Dimensional Images, 19(3), 50-56.
  • [24] Barco. Stereoscopic projection. 3D projection Technology, http://www.vr.barco.com, access 02.2016.
  • [25] Mazikowski, A. Trojanowski, M. (2013). Measurement of spectral spatial distribution of scattering materials for rear projections screens used in virtual reality systems. Metrol. Meas. Syst., 20(3), 443-452.
  • [26] Mazikowski, A., Lebiedź, J. (2014). Image Projection in Immersive 3D Visualization Laboratory. 18th International Conference on Knowledge Based and Intelligent Information & Engineering Systems KES, Procedia Computer Science, 35, 842-850.
  • [27] International Committee for Display Metrology: Information Display Measurement Standard v1.03,2012, https://www.icdm-sid.org/.
  • [28] Woods, A.J. (2012). Crosstalk in stereoscopic displays: a review. Journal of Electronic Imaging, 21(4), 040902.
Uwagi
EN
1. This study was partly supported by DS Funds of the Faculty of Electronics, Telecommunications and Informatics of the Gdańsk University of Technology and partly by Entity Grant to Finance the Maintenance of a Special Research Device (SPUB) from the Polish Ministry of Science and Higher Education.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f152b038-5385-4616-a1b5-64fdfd1da4d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.