Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
River basins located in the Central Sudetes (SW Poland) demonstrate a high vulnerability to flooding. Four mountainous basins and the corresponding outlets have been chosen for modeling the streamflow dynamics using TOPMODEL, a physically based semi-distributed topohydrological model. The model has been calibrated using the Monte Carlo approach—with discharge, rainfall, and evapotranspiration data used to estimate the parameters. The overall performance of the model was judged by interpreting the efficiency measures. TOPMODEL was able to reproduce the main pattern of the hydrograph with acceptable accuracy for two of the investigated catchments. However, it failed to simulate the hydrological response in the remaining two catchments. The best performing data set obtained Nash-Sutcliffe efficiency of 0.78. This data set was chosen to conduct a detailed analysis aiming to estimate the optimal timespan of input data for which TOPMODEL performs best. The best fit was attained for the half-year time span. The model was validated and found to reveal good skills.
Wydawca
Czasopismo
Rocznik
Tom
Strony
203--222
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
- Faculty of Earth Sciences and Environmental Management, Institute of Geography and Regional Development, University of Wrocław, Wrocław, Poland
- Center for Geospatial Analytics, North Carolina State University, Raleigh, USA
autor
- Faculty of Earth Sciences and Environmental Management, Institute of Geography and Regional Development, University of Wrocław, Wrocław, Poland
Bibliografia
- 1. Bárdossy A (2007) Calibration of hydrological model parameters for ungauged catchments. Hydrol Earth Syst Sci 11(2):703–710
- 2. Barling RD, Moore ID, Grayson RB (1994) A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resour Res 30(4):1029–1044
- 3. Bastola S, Ishidaira H, Takeuchi K (2008) Regionalisation of hydrological model parameters under parameter uncertainty: a case study involving TOPMODEL and basins across the globe. J Hydrol 357:188–206
- 4. Bednorz E (2011) Synoptic conditions of the occurrence of snow cover in central European lowlands. Int J Climatol 13(8):1108–1118
- 5. Beven K (1986) Runoff production and flood frequency in catchments of order n: an alternative approach. In: Gupta VK, Rodríguez-Iturbe I, Wood EF (eds) Scale problems in hydrology. Reider, Dordrecht, pp 107–131
- 6. Beven K (1997) TOPMODEL: a critique. Hydrol Process 11(9):1069–1085
- 7. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298
- 8. Beven K, Freer J (2001a) A dynamic topmodel. Hydrol Process 15(10):1993–2011
- 9. Beven K, Freer J (2001b) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29
- 10. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci 24:43–69
- 11. Beven K, Wood EF (1983) Catchment geomorphology and the dynamics of runoff contributing areas. J Hydrol 65:139–158
- 12. Beven KJ, Kirkby MJ, Schofield N, Tagg AF (1984) Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. J Hydrol 69:119–143
- 13. Beven KJ, Quinn PF, Lamb R, Romanowicz R, Freer J (1995) TOPMODEL. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, pp 627–668
- 14. Blazkova S, Beven K (1997) Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J Hydrol 195:256–278
- 15. Blazkova S, Beven KJ, Kulasova A (2002) On constraining TOPMODEL hydrograph simulations using partial saturated area information. Hydrol Process 16(2):441–458
- 16. Brasington J, Richards K (1998) Interactions between model predictions, parameters and DTM scales for TOPMODEL. Comput Geosci 24:299–314
- 17. Cameron DS, Beven KJ, Tawn J, Blazkova S, Naden P (1999) Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). J Hydrol 219:169–187
- 18. Chairat S, Delleur JW (1993) Effects of the topographic index distribution on predicted runoff using grass. J Am Water Resour Assoc 29:1029–1034
- 19. Chen J, Wu Y (2012) Advancing representation of hydrologic processes in the soil and water assessment tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features. J Hydrol 420–421:319–328
- 20. Choi HT, Beven K (2007) Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. J Hydrol 332:316–336
- 21. Criss RE, Winston WE (2008) Do nash values have value? Discussion and alternate proposals. Hydrol Processes 22(14):2723–2725
- 22. Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51:427–433
- 23. Drabiński A, Radczuk L, Nyc K, Mokwa M, Olearczyk D, Markowska J, Bac-Bronowicz J, Chmielewska I, Jawecki B, Gromada O, Pikul K, Malczewska B, Goździk M (2006) Program Małej Retencji Wodnej w województwie dolnośląskim. Sejmik Województwa Dolnośląskiego, Wrocław
- 24. Drzewiecki W, Wężyk P, Pierzchalski M, Szafrańska B (2014) Quantitative and qualitative assessment of soil erosion risk in Małopolska (Poland), supported by an object-based analysis of high-resolution satellite images. Pure Appl Geophys 171(2014):867–895
- 25. Durand P, Robson A, Neal C (1992) Modelling the hydrology of submediterranean montane catchments (Mont-Lozère, France) using TOPMODEL: initial results. J Hydrol 139:1–14
- 26. Erskine RH, Green TR, Ramirez JA, MacDonald LH (2006) Comparison of grid-based algorithms for computing upslope contributing area. Water Resour Res 42:1–9
- 27. Fisher JI, Beven KJ (1996) Modelling of streamflow at Slapton Wood using TOPMODEL within an uncertainty estimation framework. Field Stud 8:577–584
- 28. Franchini M, Wendling J, Obled C, Todini E (1996) Physical interpretation and sensitivity analysis of the TOPMODEL. J Hydrol 175:293–338
- 29. Freer J, Beven K, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161–2173
- 30. Freer J, Beven K, Peters N (2003) Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure. In: Duan Q, Gupta H, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. AGU Books, Washington, pp 69–87
- 31. Furusho C, Andrieu H, Chancibault K (2014) Analysis of the hydrological behaviour of an urbanizing basin. Hydrol Process 28(4):1809–1819
- 32. Gallart F, Latron J, Llorens P, Beven KJ (2008) Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin. Phys Chem Earth 33:1090–1094
- 33. Geographic Characteristic of Counties (2004) IUNG—Institute of Soil Science and Plant Cultivation, Puławy, Poland
- 34. Godek M, Sobik M, Błaś M, Polkowska Ż, Owczarek P, Bokwa A (2015) Tree rings as an indicator of atmospheric pollutant deposition to subalpine spruce forests in the Sudetes (Southern Poland). Atmos Res 151:259–268
- 35. Gumindoga W (2010) Hydrologic impacts of landuse change in the Upper Gilgel Abay River Basin, Ethiopia: TOPMODEL Application., Ph.D. Thesis, University of Twente, Faculty of Geo-Information and Earth Observation (ITC), Enschede, Netherlands
- 36. Hewlett JD, Hibbert AR (1967) Factors affecting the response of small watersheds to precipitation in humid areas. Forest hydrology. Pergamon Press, New York, pp 275–290
- 37. Holko L, Lepistö A (1997) Modelling the hydrological behaviour of a mountain catchment using TOPMODEL. J Hydrol 196:361–377
- 38. Holländer HM, Blume T, Bormann H, Buytaert W, Chirico GB, Exbrayat J-F, Gustafsson D, Hölzel H, Kraft P, Stamm C, Stoll S, Blöschl G, Flühler H (2009) Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrol Earth Syst Sci 13:2069–2094
- 39. Hornberger GM, Beven KJ, Cosby BJ, Sappington DE (1985) Shenandoah watershed study: calibration of a topography-based, variable contributing area hydrological model to a small forested catchment. Water Resour Res 21(12):1841–1850
- 40. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97
- 41. Kuczera G, Mroczkowski M (1998) Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resour Res 34(4):751–763
- 42. Lamb R, Beven KJ, Myrabø S (1997) Discharge and water table predictions using a generalized TOPMODEL formulation source. Hydrol Process 11(9):1145–1167
- 43. Latocha A, Migoń P (2006) Geomorphology of medium-high mountains under changing human impact, from managed slopes to nature restoration: a study from the Sudetes, SW Poland. Earth Surf Proc Land 31(13):1657–1673
- 44. Liu S, Graham WD, Jacobs JM (2005) Daily potential evapotranspiration and diurnal climate forcings: influence on the numerical modelling of soil water dynamics and evapotranspiration. J Hydrol 309:39–52
- 45. Merot P, Ezzahar B, Walter C, Aurousseau P (1995) Mapping waterlogging of soils using digital terrain models. Hydrol Process 9(1):27–34
- 46. Migoń P, Placek A (2014) Litologiczno-strukturalne uwarunkowania rzeźby Sudetów (Lithological and structural control on the relief of the Sudetes). Przegląd Geologiczny 62(1):36–43
- 47. Migoń P, Wyjątkowe zdarzenia przyrodnicze na Dolnym Śląsku i ich skutki (2010) In: Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego, Uniwersytet Wrocławski, Wrocław, Poland, pp 35–80
- 48. Mitasova H, Hofierka J, Zlocha M, Iverson LR (1996) Modeling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Syst 10:629–641
- 49. Molicova H, Grimaldi M, Bonell M, Hubert P (1997) Using TOPMODEL towards identifying and modelling the hydrological patterns within a headwater, humid, tropical catchment. Hydrol Process 11(9):1169–1196
- 50. Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50:1294–1298
- 51. Moore RD, Thompson JC (1996) Are water table variations in a shallow forest soil consistent with the TOPMODEL concept? Water Resour Res 32:663–669
- 52. Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47:423–428
- 53. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900
- 54. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290
- 55. Niedzielski T, Miziński B (2017) Real-time hydrograph modelling in the upper Nysa Kłodzka river basin (SW Poland): a two-model hydrologic ensemble prediction approach. Stoch Env Res Risk Assess 31:1555–1576
- 56. Niedzielski T, Miziński B, Kryza M, Netzel P, Wieczorek M, Kasprzak M, Kosek W, Migoń P, Szymanowski M, Jeziorska J, Witek M (2014) HydroProg: a system for hydrologic forecasting in real time based on the multimodelling approach. Meteorol Hydrol Water Manag Res Oper Appl 2:65–72
- 57. Nourani V, Mano A (2007) Semi-distributed flood runoff model at the subcontinental scale for southwestern Iran. Hydrol Process 21(23):3173–3180
- 58. Nourani V, Zanardo S (2014) Wavelets-based regularization of the extracted topographic index from high-resolution topography for hydro-geomorphic applications. Hydrol Process 28:1345–1357
- 59. Nourani V, Roughani A, Gebremichael M (2011) Topmodel capability for rainfall-runoff modeling of the Ammameh watershed at different time scales using different terrain algorithms. J Urban Environ Eng 5:1–14
- 60. Orczykowski T, Tiukało A (2016) Retention of afforestation areas as part of flood protection—research site and methodology for headwater watershad in Poland/Retencja Leśna Zlewni Jako Element Ochrony Przeciwpowodziowej. Civ Environ Eng Rep 20:59–70
- 61. Pawlik Ł, Migoń P, Owczarek P, Kacprzak A (2013) Surface processes and interactions with forest vegetation on a steep mudstone slope, Stołowe Mountains, SW Poland. CATENA 109:203–216
- 62. Peters NE, Freer J, Beven K (2003) Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL. Hydrol Process 179(2):345–362
- 63. Piasecki J (1996) Wybrane cechy klimatu Masywu Śnieżnika. In: Jahn A, Kozłowski S, Pulina M (eds) Masyw Śnieżnika—zmiany w środowisku przyrodniczym. PAE, Warszawa, pp 189–218
- 64. Piñol J, Beven K, Freer J (1997) Modelling the hydrological response of mediterranean catchments, Prades, Catalonia. The use of distributed models as aids to hypothesis formulation. Hydrol Process 11(9):1287–1306
- 65. Quinn PF, Beven KJ (1993) Spatial and temporal predictions of soil moisture dynamics, runoff, variable source areas and evapotranspiration for plynlimon, mid-wales. Hydrol Process 7(4):425–448
- 66. Robson A, Beven K, Neal C (1992) Towards identifying sources of subsurface flow: a comparison of components identified by a physically based runoff model and those determined by chemical mixing techniques. Hydrol Process 6(2):199–214
- 67. Romanowicz RJ (2007) Data based mechanistic model for low flows: implications for the effects of climate change. J Hydrol 336:74–83
- 68. Romanowicz R, Beven K (2003) Estimation of flood inundation probabilities as conditioned on event inundation maps. Water Resour Res 39(3):1073–1085
- 69. Schmuck A (1969) Meteorologia i klimatologia dla WSR. PWN, WarszawaG
- 70. Shrestha S, Bastola S, Babel MS, Dulal KN, Magome J, Hapuarachchi HAP, Takeuchi K (2007) The assessment of spatial and temporal transferability of a physically based distributed hydrological model parameters in different physiographic regions of Nepal. J Hydrol 347:153–172
- 71. Sigdel A, Jha R, Bhatta D, Abou-Shanab RAI, Sapireddy VR, Jeon B-H (2011) Applicability of TOPMODEL in the catchments of Nepal: Bagmati River Basin. Geosyst Eng 14(4):181–190
- 72. Sun S, Deng H (2004) A study of rainfall-runoff response in a catchment using TOPMODEL. Adv Atmos Sci 21(1):87–95
- 73. Szalińska W, Tokarczyk T, Jełowicki J, Chorążyczewski A, Michalski A, Tiukało A, Ostojski M (2014) Środowisko obliczeniowe operacyjnego modelu typu opad-odpływ. Monografie Komitetu Gospodarki Wodnej PAN XX, pp 293–306
- 74. Taschner S (2003) Flood modelling in the Ammer watershed using coupled meteorological and hydrological models, Ph.D. Thesis, Ludwig-Maximilians-Universität München, Germany
- 75. Waroszewski J, Kalinski K, Malkiewicz M, Mazurek R, Kozlowski G, Kabala C (2013) Pleistocene–holocene cover-beds on granite regolith as parent material for Podzols—an example from the Sudeten Mountains. CATENA 104:161–173
- 76. Wieczorek M, Migoń P (2014) Automatic relief classification versus expert and field based landform classification for the medium-altitude mountain range, the Sudetes, SW Poland. Geomorphology 206:133–146
- 77. Wolock DM, Hornberger GM, Musgrove TJ (1990) Topographic effects on flow path and surface water chemistry of the Llyn Brianne catchments in Wales. J Hydrol 115(1–4):243–259
- 78. Wood EF, Sivapalan M, Beven K, Band L (1988) Effects of spatial variability and scale with implications to hydrologic modeling. J Hydrol 102:27–47
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1529697-d483-47d7-afff-6f7ca8314119