Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
An optimum route to synthesis the W-based composite powders with homogeneous dispersion of oxide nanoparticles was investigated. The La2O3 dispersed W powder was synthesized by ultrasonic spray pyrolysis using ammonium metatungstate hydrate and lanthanum nitrate. The dispersion of Y2O3 nanoparticles in W-La2O3 powder was carried out by a polymer addition solution method using yttrium nitrate. XPS and Tem analyses for the composite powder showed that the nano-sized La2O3 and Y2O3 particles were well distributed in W powder. This study suggests that the combination processing of ultrasonic spray pyrolysis and polymeric additive solution is a promising way to synthesis W-based composite powders.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1507--1510
Opis fizyczny
Bibliogr. 14 poz., fot., rys.
Twórcy
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
- Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
- Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
autor
- Pusan National University, Graduate School of Convergence Science, Busan 46241, Republic of Korea
autor
- Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
Bibliografia
- [1] H. Wang, Z.Z. Fang, K.S. Hwang, H. Zhang, D. Siddle, Int. J. Refrac. Met. H. 28, 312-316 (2010).
- [2] Z.S. Levin, K.T. Hartwig, Mater. Sci. Eng. 707, 602-611 (2017).
- [3] W.J. Choi, J.H. Kim, H. Lee, C.W. Park, Y.-I. Lee, J. Byun, Int. J. Refrac. Met. H. 95, 105450-105458 (2021).
- [4] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloy. Compd. 95, 2969-2973 (2017).
- [5] S. Park, D.-K. Kim, S. Lee, H.J. Ryu, S.H. Hong, H.J. Ryu, Metall. Mater. Trans. A. 32, 2011-2020 (2001).
- [6] H. Jo, Y.-I. Lee, M.-J. Suk, Y.-K. Jeong, S.-T. Oh, Arch. Metall. Mater. 66, 799-802 (2021).
- [7] E.S. Lee, G. Lee, Y.-I. Lee, Y.-K. Jeong, S.-T. Oh, Powder Metall. 64, 108-114 (2021).
- [8] M. Weil, W.-D. Schubert, “The beautiful colors of Tungsten oxides”, ITIA Newsl. 1-12 (2013).
- [9] X. Zhang, Z. Gong, J. Huang, B. Yu, Mater. Res. Express 7, 56513-56522 (2020).
- [10] F.Y. Xie, L. Gong, X. Liu, Y.T. Yao, W.H. Zhang, S.H. Chen, H. Meng, J. Chen, J. Electron. Spcetrosc. 185, 112-118 (2012).
- [11] E. Baskys, V. Bondarenka, S. Grebinskij, M. Senulis, R. Sereika, Lith. J. Phys. 43, 120-124 (2014).
- [12] D. Barreca, G.A. Battiston, D. Berto, Surf. Sci. Spectra 8, 234-239 (2001).
- [13] P. Huang, Y. Zhao, J. Zhang, Y. Zhu, Y. Sun, Nanoscale 5, 10844-10848 (2013).
- [14] W. Hu, Q. Ma, Z. Ma, Y. Huang, Z. Wang, Y. Liu, Tungsten 1, 220-228 (2019)
Uwagi
1. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1A2B5B01070587).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-f14ec000-d083-4e11-9922-b2cd88b641b1