Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the influence of altering hydraulic parameters on the temperature of ISO HM VG 46 hydraulic mineral oil. Hydraulic mineral oils find extensive application in industrial power transmission systems, where precise temperature control is crucial for achieving optimal performance and prolonging system lifespan. Variations in hydraulic parameters, encompassing flow rate, pressure, and viscosity, can significantly impact the thermal characteristics of hydraulic oil. In this research, experimental studies were carried out to study the influence of changing hydraulic parameters on the temperature of hydraulic mineral oil. Experiments were performed on a hydraulic press, where different working conditions were simulated. The quality of hydraulic fluid is considered, according to all research, to be the most influential factor in ensuring the reliable operation of hydraulic systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 190826
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
- Mechanical Engineering, Technical faculty "Mihajlo Pupin", University of Novi Sad, Serbia
autor
- Mechanical Engineering, Technical faculty "Mihajlo Pupin", University of Novi Sad, Serbia
autor
- Mechanical Engineering, Technical faculty "Mihajlo Pupin", University of Novi Sad, Serbia
autor
- Mechanical Engineering, Technical faculty "Mihajlo Pupin", University of Novi Sad, Serbia
autor
- Mechanical Engineering, Faculty of Technical Science, University of Novi Sad, Serbia
autor
- Mechanical Engineering, Technical faculty "Mihajlo Pupin", University of Novi Sad, Serbia
autor
- Mechanical Engineering, Technical faculty "Mihajlo Pupin", University of Novi Sad, Serbia
Bibliografia
- 1. Alawi O A, Sidik N A C, Xian H W et al. Thermal conductivity and viscosity models of metallic oxides nanofluids. International Journal of Heat and Mass Transfer 2018; 116: 1314–1325, https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.133.
- 2. Banaszek A. Methodology of flow rate assessment of submerged hydraulic ballast pumps on modern product and chemical tankers with use of neural network methods. Procedia Computer Science 2021; 192: 1894–1903, https://doi.org/10.1016/j.procs.2021.08.195.
- 3. Banaszek A, Petrovic R. Problem of Non Proportional Flow of Hydraulic Pumps Working with Constant Pressure Regulators in Big Power Multipump Power Pack Unit in Open System. Tehnicki vjesnik - Technical Gazette 2019. doi:10.17559/TV-20161119215558, https://doi.org/10.17559/TV-20161119215558.
- 4. Bock W. Hydraulic Oils. In Dresel W, Mang T (eds): Lubricants and Lubrication, 1st edition. Wiley: 2017: 345–420, https://doi.org/10.1002/9783527645565.ch11.
- 5. Esfe M H, Kamyab M H, Afrand M, Amiri M K. Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10W-40 engine oil. Physica A: Statistical Mechanics and its Applications 2018; 510: 610–624, https://doi.org/10.1016/j.physa.2018.06.029.
- 6. Goharrizi A Y, Sepehri N. Application of Fast Fourier and Wavelet Transforms Towards Actuator Leakage Diagnosis: A Comparative Study. International Journal of Fluid Power 2013; 14(2): 39–51, https://doi.org/10.1080/14399776.2013.10781074.
- 7. Goharrizi A Y, Sepehri N. Internal Leakage Detection in Hydraulic Actuators Using Empirical Mode Decomposition and Hilbert Spectrum. IEEE Transactions on Instrumentation and Measurement 2012; 61(2): 368–378, https://doi.org/10.1109/TIM.2011.2161938.
- 8. Goharrizi A Y, Sepehri N. A Wavelet-Based Approach to Internal Seal Damage Diagnosis in Hydraulic Actuators. IEEE Transactions on Industrial Electronics 2010; 57(5): 1755–1763, https://doi.org/10.1109/TIE.2009.2032198.
- 9. Gullapalli S, Michael P, Kensler J et al. An Investigation of Hydraulic Fluid Composition and Aeration in an Axial Piston Pump. ASME/BATH 2017 Symposium on Fluid Power and Motion Control, Sarasota, Forida, USA, American Society of Mechanical Engineers: 2017: V001T01A028, https://doi.org/10.1115/FPMC2017-4259.
- 10. Guo S, Chen J, Lu Y et al. Hydraulic piston pump in civil aircraft: Current status, future directions and critical technologies. Chinese Journal of Aeronautics 2020; 33(1): 16–30, https://doi.org/10.1016/j.cja.2019.01.013.
- 11. Hodges P. Hydraulic Fluids, Petroleum Consult., Norway. New York, John Wiley Sons: 1996. https://doi.org/10.1016/B978-034067652-3/50022-1
- 12. Hong S-H, Jeon H-G. Monitoring the Conditions of Hydraulic Oil with Integrated Oil Sensors in Construction Equipment. Lubricants 2022; 10(11): 278, https://doi.org/10.3390/lubricants10110278.
- 13. Jin Y, Shan C, Wu Y et al. Fault Diagnosis of Hydraulic Seal Wear and Internal Leakage Using Wavelets and Wavelet Neural Network. IEEE Transactions on Instrumentation and Measurement 2019; 68(4): 1026–1034, https://doi.org/10.1109/TIM.2018.2863418.
- 14. Kotia A, Rajkhowa P, Rao G S, Ghosh S K. Thermophysical and tribological properties of nanolubricants: A review. Heat and mass transfer 2018; 54: 3493–3508, https://doi.org/10.1007/s00231-018-2351-1.
- 15. Lind S J, Phillips T N. The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary. Theoretical and Computational Fluid Dynamics 2012; 26(1–4): 245–277, https://doi.org/10.1007/s00162-011-0227-9.
- 16. Liu S, Tu A, Mo X et al. Experimental study and comparative performance analysis on thermal-hydraulic characteristic of a novel longitudinal flow oil cooler. Applied Thermal Engineering 2021; 199: 117567, https://doi.org/10.1016/j.applthermaleng.2021.117567.
- 17. Mahankar P S, Dhoble A S. Review of hydraulic seal failures due to effect of medium to high temperature. Engineering Failure Analysis 2021; 127: 105552, https://doi.org/10.1016/j.engfailanal.2021.105552.
- 18. Manring N D, Fales R C. Hydraulic control systems. John Wiley & Sons: 2019. https://doi.org/10.1002/9781119418528
- 19. Mondal M K, Manna N K, Saha R. Study of leakage flow through a spool valve under blocked-actuator port condition—Simulation and experiment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2014; 228(8): 1405–1417, https://doi.org/10.1177/0954406213507702.
- 20. Novaković B, Radovanović L, Zuber N et al. Analysis of the influence of hydraulic fluid quality on external gear pump performance. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(2): 260–268, https://doi.org/10.17531/ein.2022.2.7.
- 21. Osiński P, Deptuła A, Partyka M A. Hydraulic Tests of the PZ0 Gear Micropump and the Importance Rank of Its Design and Operating Parameters. Energies 2022; 15(9): 3068, https://doi.org/10.3390/en15093068.
- 22. Ritucci A L, Frizziero L, Liverani A. Maintainability Approach: Hydraulic Pump with External Gears Explored with Design for Disassembly and Augmented Reality. Applied Sciences 2021; 11(2): 666, https://doi.org/10.3390/app11020666.
- 23. Rydberg K-E. Hydraulic fluid properties and their impact on energy efficiency. Linköping University Electronic Press: 2013: 447–453. https://doi.org/10.3384/ecp1392a44
- 24. Savić V. Uljna hidraulika 4 deo 2. Novi Sad, IKOS Novi Sad: .
- 25. Shababi K, Firouzi M, Fakhar A. An experimental study on rheological behavior of SAE50 engine oil: Effects of temperature and hybrid nano-materials composed of 20 vol% MWCNTs and 80 vol% TiO2. Journal of Thermal Analysis and Calorimetry 2018; 131(3): 2311–2320, https://doi.org/10.1007/s10973-017-6693-6.
- 26. Sharma G, Kotia A, Ghosh S K et al. Kinematic viscosity prediction of nanolubricants employed in heavy earth moving machinery using machine learning techniques. International Journal of Precision Engineering and Manufacturing 2020; 21: 1921–1932, https://doi.org/10.1007/s12541-020-00379-9.
- 27. Shen W, Zhang J, Sun Y et al. Effect of cavitation bubble collapse on hydraulic oil temperature. Journal of Central South University 2016; 23(7): 1657–1668, https://doi.org/10.1007/s11771-016-3220-z.
- 28. Śliwiński P. The influence of pressure drop on the working volume of a hydraulic motor. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(4): 747–757, https://doi.org/10.17531/ein.2022.4.15.
- 29. Stawiński Ł, Kosucki A, Cebulak M et al. Investigation of the influence of hydraulic oil temperature on the variable-speed pump performance. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(2): 289–296, https://doi.org/10.17531/ein.2022.2.10.
- 30. Strmčnik E, Majdič F. Comparison of leakage level in water and oil hydraulics. Advances in Mechanical Engineering 2017; 9(11): 168781401773772, https://doi.org/10.1177/1687814017737723.
- 31. Sun Y, Wang P. Main Influencing Factors of Hydraulic Oil Performance for Construction Machinery. IOP Conference Series: Materials Science and Engineering 2019; 677(2): 022129, https://doi.org/10.1088/1757-899X/677/2/022129.
- 32. Xue L, Jiang H, Zhao Y et al. Fault diagnosis of wet clutch control system of tractor hydrostatic power split continuously variable transmission. Computers and Electronics in Agriculture 2022; 194: 106778, https://doi.org/10.1016/j.compag.2022.106778.
- 33. Yao Z, Tang J, Rui T, Duan J. A time–frequency analysis based internal leakage detection method for hydraulic actuators. Advances in Mechanical Engineering 2017; 9(1): 168781401668505, https://doi.org/10.1177/1687814016685058.
- 34. Zhao X, Vacca A. Numerical analysis of theoretical flow in external gear machines. Mechanism and Machine Theory 2017; 108: 41–56, Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 4, 2024 https://doi.org/10.1016/j.mechmachtheory.2016.10.010.
- 35. Zhou J, Vacca A, Casoli P. A novel approach for predicting the operation of external gear pumps under cavitating conditions. Simulation Modelling Practice and Theory 2014; 45: 35–49, https://doi.org/10.1016/j.simpat.2014.03.009.
- 36. Zhu Y, Wu Q, Tang S et al. Intelligent Fault Diagnosis Methods for Hydraulic Piston Pumps: A Review. Journal of Marine Science and Engineering 2023; 11(8): 1609, https://doi.org/10.3390/jmse11081609.
- 37. Market Research Report. 2022: 343.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f14b5609-8e05-479e-be7a-5d8e39a50991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.