PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Screw Extrusion as a Scalable Technology for Manufacturing Polylactide Composite with Graphene Filler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of carbon nanomaterials as fillers in the process of obtaining polymer composites by extrusion poses many problems. The high agglomeration ability and low bulk density of carbon nanomaterials do not allow to easy production of composites characterized by very good dispersion of the filler in the polymer matrix, which is required to obtain a high-quality product. The advantage of this type of fillers is that the improvement of the composite properties can be achieved even at a low degree of filling. In this article, we describe a method for obtaining polylactide composites with a nanofiller in the form of graphene nanoplatelets. To overcome the difficulties associated with the use of graphene, we divided the process of obtaining composites into two stages. In the first stage, we made a masterbatch containing 25 wt.% graphene, from which, in the second stage, we obtained target composites containing from 0.1 to 2 wt.% graphene. A twin-screw extruder was used in both stages. The tested filling levels had no significant impact on the recorded processing parameters. The composites obtained by the described method are characterized by good dispersion of graphene. However the graphene agglomerates can be observed in the polymer matrix. Composites were tested by SEM, FTIR, DSC and MFR methods. Mechanical tests such as static tension, three-point bending, impact strength showed that the addition of 0.5 wt% of graphene improves tensile strength by 10 %, Young's modulus by 19 % and both flexural strength and flexural modulus by 15 %. The carbon filler has an impact on crystallization process of the polymer matrix by acting as a nucleating agent.
Słowa kluczowe
Twórcy
  • Faculty of Mechatronics, Kazimierz Wielki University, ul. Kopernika 1, 85-074 Bydgoszcz, Poland
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, ul. Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, ul. Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, ul. Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
  • Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, ul. Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
  • Faculty of Physics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland
Bibliografia
  • 1. Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater. 2013; 2(1): 8.
  • 2. Carothers WH, Dorough GL, Natta FJV. Studies of polymerization and ring formation. The reversible polymerization of six-membered cyclic esters. J am chem soc. 1932; 54(2): 761–72.
  • 3. Trivedi AK, Gupta MK, Singh H. PLA based biocomposites for sustainable products: A review. Advanced Industrial and Engineering Polymer Research. 2023; 6(4): 382–95.
  • 4. Androsch R, Schick C, Di Lorenzo ML. Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Advances in Polymer Science. 2018; 279: 235–272.
  • 5. Kawai F. Polylactic Acid (PLA)-degrading microorganisms and PLA depolymerases. ACS Symposium Series. 2010; 1043: 405–414.
  • 6. Avinc O, Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem. 2009; 41(6): 391–401.
  • 7. Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: a review. Chemosphere. 2021; 280: 130723.
  • 8. Barillari F, Chini F. Biopolymers - sustainability for the automotive value-added chain. ATZ Worldw. 2020; 122(11): 36–39.
  • 9. Knoch S, Pelletier F, Larose M, Chouinard G, Dumont MJ, Tavares JR. Surface modification of PLA nets intended for agricultural applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020; 598: 124787. 10. Fahim IS, Chbib H, Mahmoud HM. The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustainable Chemistry and Pharmacy. 2019; 12: 100142.
  • 11. DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. Engineered Regeneration. 2020; 1: 76–87.
  • 12. Davachi SM, Kaffashi B. Polylactic acid in medicine. Polymer-Plastics Technology and Engineering. 2015; 54(9): 944–967.
  • 13. Mattana G, Briand D, Marette A, Vásquez Quintero A, de Rooij NF. Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Organic Electronics 2015; 17: 77–86.
  • 14. Shi X, Dai X, Cao Y, Li J, Huo C, Wang X. Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res. 2017; 56(14): 3887–3894.
  • 15. Shao L, Xi Y, Weng Y. Recent advances in PLA-based antibacterial food packaging and its applications. Molecules. 2022; 27(18): 5953.
  • 16. Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K. A comprehensive review on polylactic acid (PLA) – synthesis, processing and application in food packaging. International Journal of Biological Macromolecules. 2023; 234: 123715.
  • 17. Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N. Natural fiber reinforced polylactic acid composites: a review. Polymer Composites. 2019; 40(2): 446–463.
  • 18. Rajeshkumar G, Arvindh Seshadri S, Devnani GL, Sanjay MR, Siengchin S, Prakash Maran J. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. Journal of Cleaner Production. 2021; 310: 127483. 19. Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. J Polym Res. 2022; 29(10): 422.
  • 20. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS. Properties and characterization of a PLAchitin–starch biodegradable polymer composite. Polymers. 2019; 11(10): 1656.
  • 21. Fu Z, Cui J, Zhao B, Shen SGF, Lin K. An overview of polyester/hydroxyapatite composites for bone tissue repairing. Journal of Orthopaedic Translation. 2021; 28: 118–130.
  • 22. Shahdan D, Rosli NA, Chen RS, Ahmad S, Gan S. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: a review. International Journal of Biological Macromolecules. 2023; 251: 126214.
  • 23. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B. 2004; 108(52):
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f14a2ef5-a843-4941-bfb3-dbb8edd56b58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.