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Abstract. In this paper we prove large and moderate deviations principles for the recursive
kernel estimators of a distribution function defined by the stochastic approximation algorithm.
We show that the estimator constructed using the stepsize which minimize the Mean Integrated
Squared Error (MISE) of the class of the recursive estimators defined by Mokkadem et al.
gives the same pointwise large deviations principle (LDP) and moderate deviations principle
(MDP) as the Nadaraya kernel distribution estimator.
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1. INTRODUCTION

Let us first recall that a Rm-valued sequence (Zn)n≥1 satisfies a LDP with speed (νn)
and good rate function I if:
1. (νn) is a positive sequence such that limn→∞ νn =∞;
2. I : Rm → [0,∞] has compact level sets;
3. for every borel set B ⊂ Rm,

− inf
x∈
◦
B

I(x) ≤ lim inf
n→∞

ν−1
n logP [Zn ∈ B]

≤ lim sup
n→∞

ν−1
n logP [Zn ∈ B] ≤ − inf

x∈B
I(x),

(1.1)

where
◦
B and B denote the interior and the closure of B, respectively. Moreover,

let (vn) be a nonrandom sequence that goes to infinity; if (vnZn) satisfies a LDP,
then (Zn) is said to satisfy a MDP.
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Let X1, . . . , Xn be independent, identically distributed of random variables, and
let f and F denote respectively the probability density of X1 and the distribution
function of X1. The LDP and MDP problems arise in the theory of statistical inference
quite naturally. For estimation of the distribution function F , we apply a stochastic
algorithm, which approximates the function F . In fact we apply a stochastic algorithm
for search of zero of the function h : y → F (x)− y at a given point x. We thus proceed
in the following way: (i) we set F0(x) ∈ [0, 1]; (ii) for all n ≥ 1, we set

Fn(x) = Fn−1(x) + γnWn(x),

where the stepsize (γn) is a sequence of positive real numbers that goes to zero and
Wn(x) can be interpreted as an “observation” of the function h at the point Fn−1(x).
We shall choose Wn(x) such that E [Wn(x)|Fn−1] = 0, where Fn−1 stands for the
σ-algebra of the events occurring up the time n− 1. To define Wn(x), we follow the
approach of [14, 15] and of [21] and introduce a kernel K satisfying

∫
RK(x)dx = 1,

a function K defined by K (z) =
∫ z
−∞K (u) du, and a bandwidth (hn), which is

a sequence of positive real numbers that goes to zero, and set

Wn(x) = K
(
h−1
n (x−Xn)

)
− Fn−1(x).

The stochastic approximation algorithm we introduce to recursively estimate the dis-
tribution function F at the point x can thus be written as

Fn(x) = (1− γn)Fn−1(x) + γnK
(
x−Xn

hn

)
. (1.2)

Let us recall the estimators introduced in [9] to estimate recursively a probability
density f at the point x which are given by

fn(x) = (1− γn) fn−1(x) + γnh
−1
n K

(
x−Xn

hn

)
. (1.3)

It is well known that for non-recursive kernel estimators the optimal speed of decrease
of the window width is different for the density function and for the distribution
estimation

Recently, LDP and MDP results have been proved for the following cases:
(a) the recursive density estimators defined by stochastic approximation method

in [16].
(b) the nonrecursive Nadaraya’s kernel distribution estimator ([10]) in [17].
(c) the recursive regression estimators defined by stochastic approximation method

in [19,20].
(d) the nonrecursive regression estimator Nadaraya–Watson ([11,23]) in [7] and [5].

The purpose of this paper is to establish LDP and MDP for the recursive distribution
estimators Fn defined by stochastic approximation algorithm (1.2).

We first establish pointwise LDP for the recursive kernel distribution estimators
defined by the stochastic approximation algorithm (1.2). It turns out that the rate func-
tion depends on the choice of the stepsize (γn). In the first part of this paper we focus
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on the following two special cases: (1) (γn) =
(
n−1) and (2) (γn) =

(
hn (

∑n
k=1 hk)−1

)
.

The first one belongs to the subclass of recursive kernel density estimators which have
a minimum MSE or MISE and the second choice belongs to the subclass of recursive
kernel density estimators which have a minimum variance (see [9]).

We show that using the stepsize (γn) =
(
n−1) and bandwidths defined as hn = h(n)

for all n, where h is a regularly varying function with exponent (−a), a ∈ ]0, 1[, that
the sequence (Fn(x)− F (x)) satisfies a LDP with speed (n) and the rate function
defined as follows:

{
Ix : t→ F (x)I

(
1 + t

F (x)

)
if F (x) 6= 0,

Ix(0) = 0 and Ix(t) = +∞ for t 6= 0 if F (x) = 0,
(1.4)

where I(t) = t ln t − t + 1 is a conjugate function of ψ (u) = exp (u) − 1. Moreover,
we show that using the stepsize (γn) =

(
hn (

∑n
k=1 hk)−1

)
, with bandwidths defined

as hn = cn−a, with a ∈ ]0, 1[ and c > 0, that the sequence (Fn(x)− F (x)) satisfies
a LDP with speed (n) and the rate function defined as follows:

{
Ix;a : t→ F (x)Ia

(
1

1−a + t
F (x)

)
if F (x) 6= 0,

Ix;a(0) = 0 and Ix;a(t) = +∞ for t 6= 0 if F (x) = 0,
(1.5)

where

Ia(t) = sup
u∈R
{ut− ψa (u)} ,

ψa (u) =
1∫

0

(
exp

(
us−a

)
− 1
)
ds.

Our second aim is to provide pointwise MDP for the distribution estimator defined
by the stochastic approximation algorithm (1.2). In this case, we consider more general
stepsizes defined as γn = γ(n) for all n, where γ is a regularly varying function with
exponent (−α), α ∈ ]1/2, 1]. Throughout this paper we will use the following notation:

ξ = lim
n→+∞

(nγn)−1
. (1.6)

For any positive sequence (vn) satisfying

lim
n→∞

vn =∞ and lim
n→∞

γnv
2
n = 0

and general bandwidths (hn), we prove that the sequence

vn (Fn(x)− F (x))

satisfies a LDP of speed
(
1/
(
γnv

2
n

))
and rate function Jα;x (.) defined by

{
Jα;x : t→ t2(2−αξ)

2F (x) if F (x) 6= 0,
Jα;x(0) = 0 and Jα;x(t) = +∞ for t 6= 0 if F (x) = 0.

(1.7)
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2. ASSUMPTIONS AND MAIN RESULTS

We define the following class of regularly varying sequences.

Definition 2.1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say
that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ. (2.1)

Condition (2.1) was introduced by [3] to define regularly varying sequences (see
also [1]), and by [8] in the context of stochastic approximation algorithms. Typical
sequences in GS (γ) are, for b ∈ R, nγ (logn)b, nγ (log logn)b, and so on.

2.1. POINTWISE LDP FOR THE DISTRIBUTION ESTIMATOR
DEFINED BY THE STOCHASTIC APPROXIMATION ALGORITHM (1.2)

2.1.1. Choices of (γn) minimizing the MISE of fn
It was shown in [9] that to minimize the MISE of the recursive kernel density es-
timators noted fn, the stepsize (γn) must be chosen in GS (−1) and must satisfy
limn→∞ nγn = 1. The most simple example of stepsize belonging to GS (−1) and such
that limn→∞ nγn = 1 is (γn) =

(
n−1). For this choice of stepsize, the estimator Fn

defined by (1.2) can be rewritten as

Fn(x) = 1
n

n∑

k=1
K
(
x−Xk

hk

)
.

This estimator was considered by [4].

To establish pointwise LDP for Fn in this case, we assume the following assumptions:

(L1) K : R→ R is a bounded and integrable function satisfying
∫
RK (z) dz = 1, and∫

R zK (z) dz = 0.
(L2) (i) (hn) ∈ GS (−a) with a ∈ ]0, 1[.

(ii) (γn) =
(
n−1).

The following theorem gives the pointwise LDP for Fn in this case.

Theorem 2.2 (Pointwise LDP for Isogai and Hirose estimator). Let Assumptions (L1)
and (L2) hold and assume that F is continuous at x. Then, the sequence (Fn(x)− F (x))
satisfies a LDP with speed (n) and rate function defined by (1.4).

2.1.2. Choices of (γn) minimizing the variance of fn
It was shown in [9] that to minimize the asymptotic variance of the recursive kernel
density estimators fn, the stepsize (γn) must be chosen in GS (−1) and must satisfy
limn→∞ nγn = 1− a. The most simple example of stepsize belonging to GS (−1) and



Large and moderate deviation principles. . . 737

such that limn→∞ nγn = 1 − a is (γn) =
(
(1− a)n−1), an other stepsize satisfying

this conditions is (γn) =
(
hn (

∑n
k=1 hk)−1

)
, in this case the estimator Fn defined

by (1.2) can be rewritten as

Fn(x) = 1∑n
k=1 hk

n∑

k=1
hkK

(
x−Xk

hk

)
.

Moreover, in order to establish pointwise LDP for Fn in this case, we assume that:
(L3) (i) (hn) = (cn−a) with a ∈ ]0, 1[ and c > 0.

(ii) (γn) =
(
hn (

∑n
k=1 hk)−1

)
.

The following theorem gives the pointwise LDP for Fn in this case.
Theorem 2.3 (Pointwise LDP). Let Assumptions (L1) and (L3) hold and assume
that F is continuous at x. Then, the sequence (Fn(x)− F (x)) satisfies a LDP with
speed (n) and rate function defined by (1.5).

2.2. POINTWISE MDP FOR THE DISTRIBUTION ESTIMATOR
DEFINED BY THE STOCHASTIC APPROXIMATION ALGORITHM (1.2)

Let (vn) be a positive sequence. We assume that
(M1) K : R → R is a continuous, bounded function satisfying

∫
RK (z) dz = 1, and∫

R zK (z) dz = 0 and
∫
R z

2|K (z) |dz <∞.
(M2) (i) (γn) ∈ GS (−α) with α ∈ ]1/2, 1].

(ii) (hn) ∈ GS (−a) with a ∈ ]0, α[.
(iii) limn→∞ (nγn) ∈] min{2a, (α+ a)/2},∞].

(M3) F is bounded, twice differentiable, and F (2)(x) is bounded.
(M4) limn→∞ vn =∞ and limn→∞ γnv

2
n = 0.

The following theorem gives the pointwise MDP for Fn.
Theorem 2.4 (Pointwise MDP for the recursive estimators defined by (1.2)). Let
Assumptions (M1)–(M4) hold and assume that F is continuous at x. Then, the sequence
(Fn(x)− F (x)) satisfies a MDP with speed

(
1/
(
γnv

2
n

))
and rate function Jα;x defined

in (1.7).

3. CONCLUSION

The purpose in this paper is to prove LDP and MDP for the recursive kernel estimators
of a distribution function defined by the stochastic approximation algorithm introduced
by Slaoui ([18]).

Moreover, we showed that the estimator constructed using the stepsize which
minimize the (MISE) of the recursive estimators defined by the stochastic approxi-
mation algorithm ([18]) gives the same pointwise LDP and MDP as the nonrecursive
Nadaraya’s distribution kernel estimator.
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In conclusion, the proposed method allowed us to obtain quite similar results as
the nonrecrsive Nadaraya’s distribution kernel estimator. Moreover, we plan to extend
the i.i.d relationship to the Markovian context (see [6, 13] and [22]).

4. PROOFS

Throughout this section we use the following notation:

Πn =
n∏

j=1
(1− γj) , (4.1)

Yn = K
(
x−Xn

hn

)
. (4.2)

Let us first state the following technical lemma, which is repeatedly applied throughout
the proofs.

Lemma 4.1 ([9, Lemma 2]). Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such
that m− v∗ξ > 0, where ξ is defined in (1.6). We have

lim
n→+∞

vnΠm
n

n∑

k=1
Π−mk γkv

−1
k = (m− v∗ξ)−1

.

Moreover, for all positive sequences (αn) such that limn→+∞ αn = 0, and for all δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑

k=1
Π−mk γkv

−1
k αk + δ

]
= 0.

Note that, in view of (1.2), we have

Fn(x)− F (x) = (1− γn) (Fn−1(x)− F (x)) + γn (Yn − F (x))

=
n−1∑

k=1




n∏

j=k+1
(1− γj)


 γk (Yk − F (x)) + γn (Yn − F (x))

+




n∏

j=1
(1− γj)


 (F0(x)− F (x))

= Πn

n∑

k=1
Π−1
k γk (Yk − F (x)) + Πn (F0(x)− F (x)) .

It follows that

E [Fn(x)]− F (x) = Πn

n∑

k=1
Π−1
k γk (E [Yk]− F (x)) + Πn (F0(x)− F (x)) .
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Then, we can write that

Fn(x)− E [Fn(x)] = Πn

n∑

k=1
Π−1
k γk (Yk − E [Yk]) .

Let (Ψn) and (Bn) be the sequences defined as

Ψn(x) = Πn

n∑

k=1
Π−1
k γk (Yk − E [Yk]) ,

Bn(x) = E [Fn(x)]− F (x).

We have

Fn(x)− F (x) = Ψn(x) +Bn(x). (4.3)

Theorems 2.2, 2.3 and 2.4 are consequences of (4.3) and the following propositions.

Proposition 4.2 (Pointwise LDP and MDP for (Ψn)).

1. Under the assumptions (L1) and (L2), the sequence (Fn(x)− E (Fn(x))) satisfies
a LDP with speed (n) and rate function Ix.

2. Under the assumptions (L1) and (L3), the sequence (Fn(x)− E (Fn(x))) satisfies
a LDP with speed (n) and rate function Ix;a.

3. Under the assumptions (M1)–(M4), the sequence (vnΨn(x)) satisfies a LDP with
speed

(
1/
(
γnv

2
n

))
and rate function Jα;x.

The proof of the following proposition is given in [18, p. 319].

Proposition 4.3 (Convergence rate of (Bn)). Let (M1)–(M3) hold. If f ′ is continuous
at x, then the following assertions are satisfied.

1. If a ≤ α/3, then

Bn(x) = O
(
h2
n

)
.

2. If a > α/3, then

Bn(x) = o
(√

γnhn

)
.

Set x ∈ R. Since the assumptions of Theorems 2.2 and 2.3 guarantee that
limn→∞Bn(x) = 0, Theorem 2.2 (respectively Theorem 2.3) is a straightforward
consequence of the application of Part 1 (respectively of Part 2) of Proposition 4.2.
Moreover, under the assumptions of Theorem 2.4, we have by application of Propo-
sition 4.3, limn→∞ vnBn(x) = 0. Theorem 2.4 follows immediately from Part 3 of
Proposition 4.2.

We now state a preliminary lemma, which will be used in the proof of Proposi-
tion 4.2.
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For any u ∈ R, set

Λn,x (u) = γnv
2
n logE

[
exp

(
u

γnvn
Ψn(x)

)]
,

ΛL,1x (u) = F (x) (ψ (u)− u) ,
ΛL,2x (u) = F (x) (ψa (u)− u) ,

ΛMx (u) = u2

2 (2− αξ)F (x).

Lemma 4.4 (Convergence of Λn,x when vn ≡ 1).
1. Let Assumptions (L1) and (L2) hold, assume that F is continuous at x, then for

all u ∈ R

lim
n→∞

Λn,x (u) = ΛL,1x (u) .

2. Let Assumptions (L1) and (L3) hold, assume that F is continuous at x, then for
all u ∈ R

lim
n→∞

Λn,x (u) = ΛL,2x (u) .

Lemma 4.5 (Convergence of Λn,x when vn →∞). Let Assumptions (M1)–(M4) hold,
assume that F is continuous at x, then for all u ∈ R

lim
n→∞

Λn,x (u) = ΛMx (u) .

Our proofs are now organized as follows: Lemmas 4.4 and 4.5 are proved in
Section 4.1 and Proposition 4.2 in Section 4.2.

4.1. PROOF OF LEMMAS 4.4 AND 4.5

Set u ∈ R, un = u/vn and an = γ−1
n . We have

Λn,x (u) = v2
n

an
logE [exp (unanΨn(x))]

= v2
n

an
logE

[
exp

(
unanΠn

n∑

k=1
Π−1
k a−1

k (Yk − E [Yk])
)]

= v2
n

an

n∑

k=1
logE

[
exp

(
un
anΠn

akΠk
Yk

)]
− uvnΠn

n∑

k=1
Π−1
k a−1

k E [Yk] .

By the Taylor expansion, there exists ck,n between 1 and E
[
exp

(
un

anΠn

akΠk
Yk

)]
such

that

logE
[
exp

(
un
anΠn

akΠk
Yk

)]
= E

[
exp

(
un
anΠn

akΠk
Yk

)
− 1
]

− 1
2c2k,n

(
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
])2

,
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and Λn,x can be rewritten as

Λn,x (u) = v2
n

an

n∑

k=1
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
]

− v2
n

2an

n∑

k=1

1
c2k,n

(
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
])2

− uvnΠn

n∑

k=1
Π−1
k a−1

k E [Yk] .

Let us first prove Lemma 4.5. We consider vn →∞ as n goes to infinity. The Taylor
expansion implies the existence of c′k,n between 0 and un anΠn

akΠk
Yk such that

E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
]

= un
anΠn

akΠk
E [Yk]

+ 1
2

(
un
anΠn

akΠk

)2
E
[
Y 2
k

]

+ 1
6

(
un
anΠn

akΠk

)3
E
[
Y 3
k e

c′k,n

]
.

Therefore,

Λn,x (u) = 1
2u

2anΠ2
n

n∑

k=1
Π−2
k a−2

k E
[
Y 2
k

]
+ 1

6u
2una

2
nΠ3

n

n∑

k=1
Π−3
k a−3

k E
[
Y 3
k e

c′k,n

]

− v2
n

2an

n∑

k=1

1
c2k,n

(
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
])2

= 1
2u

2F (x)anΠ2
n

n∑

k=1
Π−2
k a−1

k γk +R(1)
n,x (u) +R(2)

n,x (u)

(4.4)

with

R(1)
n,x (u) = u2anΠ2

n

n∑

k=1
Π−2
k a−1

k γk

∫

R

K (z)K (z) [F (x− zhk)− F (x)] dz,

R(2)
n,x (u) = 1

6
u3

vn
a2
nΠ3

n

n∑

k=1
Π−3
k a−3

k E
[
Y 3
k e

c′k,n

]

− v2
n

2an

n∑

k=1

1
c2k,n

(
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
])2

.

Since F is continuous, we have limk→∞ |F (x− zhk)− F (x)| = 0, and thus, by the
dominated convergence theorem, (M1) implies that

lim
k→∞

∫

R

K (z)K (z) |F (x− zhk)− F (x)| dz = 0.
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Since (an) ∈ GS (α), and limn→∞ (nγn) > α/2, Lemma 4.1 then ensures that

anΠ2
n

n∑

k=1
Π−2
k a−1

k γk = (2− αξ)−1 + o (1) , (4.5)

it follows that limn→∞
∣∣∣R(1)

n,x (u)
∣∣∣ = 0.

Moreover, in view of (4.2), we have |Yk| ≤ ‖K‖∞, then

c′k,n ≤
∣∣∣∣un

anΠn

akΠk
Yk

∣∣∣∣ ≤ |un| ‖K‖∞ . (4.6)

Note that E |Yk|3 ≤ 3 ‖F‖∞
∫
R |K (z)|

∣∣K2 (z)
∣∣ dz. Hence, using Lemma 4.1 and (4.6),

there exists a positive constant c1 such that, for n large enough,

∣∣∣∣∣
u3

vn
a2
nΠ3

n

n∑

k=1
Π−3
k a−3

k E
[
Y 3
k e

c′k,n

]∣∣∣∣∣ ≤ c1e
|un|‖K‖∞ u

3

vn
‖F‖∞

∫

R

|K (z)|
∣∣K2 (z)

∣∣ dz (4.7)

which goes to 0 as n→∞ since vn →∞. Moreover, Lemma 4.1 ensures that
∣∣∣∣∣
v2
n

2an

n∑

k=1

1
c2k,n

(
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
])2

∣∣∣∣∣

≤ v2
n

2an

n∑

k=1

(
E
[
exp

(
un
anΠn

akΠk
Yk

)
− 1
])2

≤ u2

2 ‖f‖
2
∞ anΠ2

n

n∑

k=1
Π−2
k a−1

k γkhk + o

(
anΠ2

n

n∑

k=1
Π−2
k a−1

k γkhk

)

= o (1) .

(4.8)

The combination of (4.7) and (4.8) ensures that limn→∞
∣∣∣R(2)

n,x (u)
∣∣∣ = 0. Then, we

obtain from (4.4) and (4.5), limn→∞ Λn,x (u) = ΛMx (u). Which proves Lemma 4.5.
Let us now prove Lemma 4.4. We have vn ≡ 1. Then, it follows from (4.4) that

Λn,x(u) = 1
an

n∑

k=1
E
[
exp

(
u
anΠn

akΠk
Yk

)
− 1
]

− 1
2an

n∑

k=1

1
c2k,n

(
E
[
exp

(
u
anΠn

akΠk
Yk

)
− 1
])2

− uΠn

n∑

k=1
Π−1
k a−1

k E [Yk] .
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Moreover, using integration by parts, we get

Λn,x (u) = uF (x)Πn

n∑

k=1
Π−1
k γk

∫

R

K (z) (exp (uVn,kK (z))− 1) dz

−R(3)
n,x (u) +R(4)

n,x (u) ,

(4.9)

with

Vn,k = anΠn

akΠk
, (4.10)

R(3)
n,x (u) = 1

2an

n∑

k=1

1
c2k,n

(
E
[
exp

(
u
anΠn

akΠk
Yk

)
− 1
])2

,

R(4)
n,x (u) = uΠn

n∑

k=1
Π−1
k γk

∫

R

K (z) (exp (uVn,kK (z))− 1) [F (x− zhk)− F (x)] dz.

It follows from (4.8) that limn→∞
∣∣∣R(3)

n,x (u)
∣∣∣ = 0.

Farther, since |et − 1| ≤ |t| e|t|, we have
∣∣∣R(4)

n,x (u)
∣∣∣ ≤ u2e|u|‖K‖∞γ−1

n Π2
n

n∑

k=1
Π−2
k γ2

k

∫

R

|K (z)| |K (z)| |F (x− zhk)− F (x)| dz.

Moreover, in view of Lemma 4.1 the sequence
(
γ−1
n Π2

n

∑n
k=1 Π−2

k γ2
k

)
is bounded. Then,

the dominated convergence theorem ensures that limn→∞R
(4)
n,x (u) = 0.

Then, it follows from (4.9) that

lim
n→∞

Λn,x (u) = lim
n→∞

uF (x)Πn

n∑

k=1
Π−1
k γk

∫

R

K (z) (exp (uVn,kK (z))− 1) dz. (4.11)

Let us now prove the first part of Lemma 4.4. In view of (L2), it follows from (4.1)
that

Πn

Πk
= k

n
,

and from (4.10),

Vn,k = 1.

Consequently, it follows from (4.11) that

lim
n→∞

Λn,x (u) = uF (x)
∫

R

K (z) (exp (uK (z))− 1) dz

= F (x) (exp (u)− 1− u)
= ΛL,1x (u) .
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This concludes the proof of the first part of Lemma 4.4.
Let us now prove the second part of Lemma 4.4. In view of (L3), it follows from (4.1)

that we have
Πn

Πk
= γn
γk

hk
hn
,

and from (4.10),

Vn,k = hk
hn
.

Consequently, it follows from (4.11) and from some analysis considerations that

lim
n→∞

Λn,x (u) = uF (x)
1∫

0

∫

R

s−aK (z)
(
exp

(
us−aK (z)

)
− 1)

)
dzds

= F (x)




1∫

0

(
exp

(
us−a

)
− 1
)
ds− u




= ΛL,2x (u) ,

and thus Lemma 4.4 is proved.

4.2. PROOF OF PROPOSITION 4.2

To prove Proposition 4.2, we apply Lemmas 4.4 and 4.5 and the following result, which
can be deduced from Lemma 3.5 in [12].
Lemma 4.6. Let (Zn) be a sequence of real random variables, (νn) a positive sequence
satisfying limn→∞ νn = +∞, and suppose that there exists some convex non-negative
function Γ defined on R such that

∀u ∈ R : lim
n→∞

1
νn

logE [exp (uνnZn)] = Γ (u) .

If the Legendre function Γ∗ of Γ is a strictly convex function, then the sequence (Zn)
satisfies a LDP of speed (νn) and good rate function Γ∗.

In our framework, when vn ≡ 1 and γn = n−1, we take Zn = Fn(x)− E (Fn(x)),
νn = n and Γ = ΛL,1x . In this case, the Legendre transform of Γ = ΛL,1x is the
rate function Ix : t→ F (x)I

(
1 + t

F (x)

)
, since ψ is strictly convex, then its Cramer

transform I is a good rate function on R (see [2]). Farther, when vn ≡ 1 and γn =
hn (

∑n
k=1 hk)−1, with hn = cn−a, a ∈ ]0, 1[ and c > 0, and we take Zn = Fn(x) −

E (Fn(x)), νn = n and Γ = ΛL,2x . In this case, the Legendre transform of Γ = ΛL,2x is
the rate function Ix;a : t→ F (x)Ia

(
1

1−a + t
F (x)

)
, since ψa is strictly convex, then its

Cramer transform Ia is a good rate function on R (see [2]). Otherwise, when vn →∞
we take Zn = vn (Fn(x)− E (Fn(x))), νn = 1/

(
γnv

2
n

)
and Γ = ΛMx ; Γ∗ is then the

quadratic rate function Jα;x defined in (1.7) and thus Proposition 4.2 follows.
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