PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Hydrosphere Contamination by Untreated Landfill Infiltrates and Cleaning Agents to Improve Environmental Protection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Landfill infiltrates cause contamination of surface, ground, and groundwater. In order to minimize this danger, it is necessary to implement technical measures for collecting and cleaning infiltrates. The subject of the study involved the processes of biological treatment of landfill infiltrates in aerobic lagoons and urban wastewater treatment plants. The content of nutrients necessary for plants in wastewater sediments makes it possible to use them as organic fertilizer. The fertilizing value is largely determined not only by the content of nitrogen, phosphorus, and potassium in them but also by the microelements necessary for plants, i.e. boron, molybdenum, manganese, zinc, magnesium, iodine, copper, iron, sulfur, etc. It was found that compacted excess activated sludge is a valuable complex mineral fertilizer with a high content of N and P. The possibility of converting sediment into a complex fertilizer by neutralizing wastewater sludge under biosulfidogenesis conditions during dissimilation reduction of poorly soluble sulfates was considered. The results obtained are consistent with the experimental data corresponding to the dynamics of the biogenic gas released from the bioreactor. By the nature of changes in the kinetics of biogenic carbon disulfide yield, changes in the acetate concentration and the rate of sulfate absorption, it is possible to predict the process of biosulfidogenesis and find the most optimal parameters of the system. This indicates the possibility of its use in biotechnology for the neutralization of wastewater sludge with the production of a complex organometal fertilizer.
Słowa kluczowe
Twórcy
  • Russian State Geological Exploration University Named After Sergo Ordzhonikidze (MGRI), Russia
  • Russian State Geological Exploration University Named After Sergo Ordzhonikidze (MGRI), Russia
  • Russian State Geological Exploration University Named After Sergo Ordzhonikidze (MGRI), Russia
  • Russian State Geological Exploration University Named After Sergo Ordzhonikidze (MGRI), Russia
Bibliografia
  • 1. Gupta N. 2014. Groundwater Vulnerability Assessment Using DRASTIC Method in Jabalpur District of Madhya Pradesh. International Journal of Recent Technology and Engineering, 3, 36–43.
  • 2. Census of India. 2011. Main Sources of Drinking Water 2001–2011. Department of census Kerala, Ministry of Home Affairs, New Delhi.
  • 3. Rathod M., Mishra H., Karmakar S. 2013. Leachate Characterization and Assessment of Water Pollution near Municipal Solid Waste Landfill Site. International Journal of Chemical and Physical Science, 2, 186–189.
  • 4. USEPA (United States Environmental Protection Agency) (1984) A groundwater protection strategy for the Environmental Protection Agency. EPA Number: 440684002.
  • 5. Wijesekara S.S.R.M.D.H.R., Mayakaduwa S.S., Siriwardana A.R., de Silva N., Basnayake B.F.A., Kawamoto K., Vithanage M. 2014. Fate and Transport of Pollutants through a Municipal Solid Waste Landfill Leachate in Sri Lanka. Environmental Earth Sciences, 72, 1707–1719. http://dx.doi.org/10.1007/s12665-014-3075-2
  • 6. Nagarajan R., Thirumalaisamy S., Lakshumanan E. 2012. Impact of Leachate on Groundwater Pollution Due to Non-Engineered Municipal solid Waste Landfill Sites of Erode City, Tamil Nadu, India. Iranian Journal of Environmental Health Sciences & Engineering, 9, 35. http://dx.doi.org/10.1186/1735-2746-9-35
  • 7. Akinbile C.O., Yusoff M.S. 2011. Environmental Impact of Leachate Pollution on Groundwater Supplies in Akure, Nigeria, International Journal of Environmental Science and Development, 2, 81–86. http://dx.doi.org/10.7763/ijesd.2011.v2.101
  • 8. Kanmani S., Gandhimathi R. 2013. Assessment of Heavy Metal Contamination in Soil Due to Leachate Migration from an Open Dumping Site. Applied Water Science, 3, 193–205. http://dx.doi.org/10.1007/s13201-012-0072-z
  • 9. Abdel-Shafy H.I., Mansour M.S.M. 2018. Solid waste issues: Sources, composition, disposal, recycling and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  • 10. Abedin M.A., Jahiruddin M. 2015. Waste generation and management in Bangladesh: An overview. Asian Journal of Medical and Biological Research, 1(1), 114–120.
  • 11. Ferronato N., Torretta V. 2019. Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060
  • 12. Ganesh T., Vignesh P., Kumar G.A. 2013. Refuse derived fuel to electricity. International Journal of Engineering Research & Technology, 2(9). https://www.ijert.org/refuse-derived-fuel-to-electricity
  • 13. Hossain M.F., Jahan E., Parveen D.Z., Ahmed S.M., Uddin M.J. 2018. Solid waste disposal and its impact on surrounding environment of Matuail landfill site, Dhaka, Bangladesh. American Journal of Environmental Science, 14(5), 234–245. DOI: https://doi.org/10.3844/ajessp.2018.234.245
  • 14. Idris A., Inanc B., Hassan M.N. 2004. Overview of waste disposal and landfills/dumps in Asian countries. Journal of Material Cycles and Waste Management, 6(2), 104–110. DOI: https://doi.org/10.1007/s10163-004-0117-y
  • 15. Jerie S. 2016. Occupational risks associated with solid waste management in the informal sector of Gweru, Zimbabwe. Journal of Environmental and Public Health, 2016, 9024160. DOI: https://doi.org/10.1155/2016/9024160
  • 16. Kaza S., Yao L.C., Bhada-Tata P., Van Woerden F. 2018. Book: What a Waste 2.0: A global snapshot of solid waste management to 2050. World Bank Group. https://openknowledge.worldbank.org/handle/10986/30317. https://doi.org/10.1596/978-1-4648-1329-0
  • 17. Maqbool F., Bhatti Z.A., Malik A.H., Pervez A., Mahmood Q. 2011. Effect of landfill leachate on the stream water quality. International Journal of Environment Research, 5(2), 491–500. https://doi.org/10.22059/IJER.2011.333
  • 18. Moqbel S. 2009. Characterizing spontaneous fires in landfills. University of Central Florida Electronic Theses and Dissertations, 2004–2019, 3855. https://stars.library.ucf.edu/etd/3855
  • 19. Ripetskii A.V. 2019. Preliminary geometric verification of the electronic model in additive manufacturing. Russian Engineering Research, 39(9), 789–792. DOI: 10.3103/S1068798X19090181
  • 20. Ripetskiy A.V. 2018. Polygonal meshes data structure analysis used for computation of the parameters defining additive production process for different additive manufacturing technologies. Periodico Tche Quimica, 15(Special Issue 1), 291–303.
  • 21. Gurevich K.G., Urakov A.L., Bashirova L.I., Samorodov A.V., Purygin P.P., Yermokhin V.A., Gilmutdinova A.S., Bondareva N.A. 2018. The Hemostatic Activity Of Bis (2-Aminoethan-1-Sulfonate) Calcium. Asian Journal of Pharmaceutical and Clinical Research, 11, 11, 452–455, DOI: 10.22159/ajpcr.2018.v11i11.29049
  • 22. Dyachkova I., Skachkova M., Kovyazin V. 2020. The influence of transport vibrations on the condition of Russian cultural heritage objects//IOP Conference Series: Materials Science and Engineering, 817.012009.
  • 23. Urakov A.L., Mustafin I.G., Nabiullina R.M., Bashirova L.I., Mochalov K.S., Samorodov A.V., Khalimov A. 2020. Thromboelastography as an instrument of preclinical studies of the potential drug. Journal of Applied Pharmaceutical Science, 10(08), 105–110.
  • 24. Portnova Т.V. 2018. Dance in architectural space: experience and innovations of choreographic practices. Science International (Lahore), 30(3), 491–495. Retrieved from: http://www.sciint.com/pdf/636663356722086396.edited.pdf
  • 25. Bespalova E.V. 2018. Ecological zoning of the Voronezh reservoir according to the indicators of phytoplankton and microphytobenthos, E. V. Bespalova. Scientific Vedomosti of the Belgorod State University. Series: Natural Sciences. 42(3), 414–426. DOI: 10.18413/2075-4671-2018-42-3-414-426.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f145da7d-e15c-413c-88aa-a0886eb823e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.