PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and performance evaluation of sustainable lightweight cement composites utilizing fly ash and waste soil

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Foam lightweight soil (LS) is a cement composite with excellent lightness, but the excessive use of cement causes some negative impacts on the surrounding environment. This study aims to develop a sustainable cement composite by utilizing fly ash and waste soil in LS, providing a practical reference for green construction of road engineering. The physico-mechanical properties of cement composites with different mixing ratios were comparatively evaluated using geotechnical tests, and the micro-mechanisms were investigated using microscopic tests. The testing results showed that the utilization of fly ash and waste soil was unfavorable to improve the mechanical strength and the damage resistance of LS, but significantly decreased the use of cement. The comprehensive performance of cement composite reached the optimum when the replacement rates of fly ash and waste soil were 10% and 20%. Fly ash reacted with the hydration products of cement producing more cementitious gels to make the internal structure of cement composite denser, while waste soil not involved in its chemical reaction. The life cycle assessment indicated that the potential environmental impact of LS was improved after utilizing fly ash and waste soil, and the proposed sustainable cement composite had good feasibility in engineering.
Rocznik
Strony
art. no. e113, 2024
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Jiangsu Key Laboratory of Low Carbon and Sustainable Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, Jiangsu Province, China
autor
  • Shandong Provincial Communications Planning and Design Institute Group Co., Ltd, Jinan 250000, Shandong Province, China
autor
  • Jiangsu Key Laboratory of Low Carbon and Sustainable Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, Jiangsu Province, China
autor
  • Jiangsu Traffic Engineering Construction Bureau, Nanjing 210004, Jiangsu Province, China
autor
  • Jiangsu Traffic Engineering Construction Bureau, Nanjing 210004, Jiangsu Province, China
autor
  • Jiangsu Key Laboratory of Low Carbon and Sustainable Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, Jiangsu Province, China
autor
  • Jiangsu Key Laboratory of Low Carbon and Sustainable Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, Jiangsu Province, China
autor
  • Jiangsu Key Laboratory of Low Carbon and Sustainable Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, Jiangsu Province, China
Bibliografia
  • 1. Chi G. The impacts of highway expansion on population change: an integrated spatial approach. Rural Sociol. 2010;75(1):58-89.
  • 2. Yu H, Wang Y, Zou C, Wang P, Yan C. Study on subgrade settlement characteristics after widening project of highway built on weak foundation. Arab J Sci Eng. 2017;42(9):3723-32. https://doi.org/10.1007/s13369-017-2469-3.
  • 3. Jiang F, Ma L, Broyd T, Chen K, Luo H. Underpass clearance checking in highway widening projects using digital twins. Autom Constr. 2022;141: 104406. https://doi.org/10.1016/j.autcon.2022.104406.
  • 4. Tsuchida T, Egashira K. The lightweight treated soil method: new geomaterials for soft ground engineering in coastal areas. Boca Raton: CRC Press; 2004.
  • 5. Yuan XZ, Lu Z, Yao HL, Tan XJ, Zhao Y, Tang C, Cheng M, Gao Y, Mohan S. Engineering properties and applications of air-foamed lightweight soil. Adv Mater Sci Eng. 2022;2022:4967037. https://doi.org/10.1155/2022/4967037.
  • 6. Pu S, Zhu Z, Huo W. Evaluation of engineering properties and environmental effect of recycled gypsum stabilized soil in geotechnical engineering: a comprehensive review. Resour Conserv Recycl. 2021;174: 105780. https://doi.org/10.1016/j.resconrec.2021.105780.
  • 7. Pu S, Zhu Z, Song W, Wang H, Huo W, Zhang J. A novel acidic phosphoric-based geopolymer binder for lead solidification/stabilization. J Hazard Mater. 2021;415: 125659. https://doi.org/10.1016/j.jhazmat.2021.125659.
  • 8. Zhang C, Zhu Z, Zhang Y, Liu F, Yang Y, Wan Y, Huo W, Yang L. Engineering properties and optimal design of foam lightweight soil composite fly ash: an eco-friendly subgrade material. J Clean Prod. 2023;429: 139631. https://doi.org/10.1016/j.jclepro.2023.139631.
  • 9. Pu S, Duan W, Zhu Z, Wang W, Zhang C, Li N, Jiang P, Wu Z. Environmental behavior and engineering performance of self-developed silico-aluminophosphate geopolymer binder stabilized lead contaminated soil. J Clean Prod. 2022;379: 134808. https://doi.org/10.1016/j.jclepro.2022.134808.
  • 10. Tiwari MK, Bajpai S, Dewangan UK, Tamrakar RK. Suitability of leaching test methods for fly ash and slag: a review. J Radiat Res Appl Sci. 2015;8(4):523-37. https://doi.org/10.1016/j.jrras.2015.06.003.
  • 11. Moon GD, Oh S, Choi YC. Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar. Constr Build Mater. 2016;124:1072-80. https://doi.org/10.1016/j.conbuildmat.2016.08.148.
  • 12. Park B, Choi YC. Hydration and pore-structure characteristics of high-volume fly ash cement pastes. Constr Build Mater. 2021;278: 122390. https://doi.org/10.1016/j.conbuildmat.2021.122390.
  • 13. Liu J, Qiu QW, Xing F, Pan D. Permeation properties and pore structure of surface layer of fly ash concrete. Materials. 2014;7(6):4282-96. https://doi.org/10.3390/ma7064282.
  • 14. Akmalaiuly K, Berdikul N, Pundiene I, Pranckeviciene J. The effect of mechanical activation of fly ash on cement-based materials hydration and hardened state properties. Materials. 2023;16(8):2959. https://doi.org/10.3390/ma16082959.
  • 15. Guan L, Chen Y, Ye W, Wu D, Deng Y. Foamed concrete utilizing excavated soil and fly ash for urban underground space backfilling: physical properties, mechanical properties, and microstructure. Tunn Undergr Space Technol. 2023;134: 104995. https://doi.org/10.1016/j.tust.2023.104995.
  • 16. GB 50123. Standard for geotechnical testing method. Ministry of Housing and Urban-Rural Development of the People’s Republic of China; 2019.
  • 17. ASTM D2487. Practice for classification of soils for engineering purposes. USA: ASTM International; 2017.
  • 18. Pu S, Zhu Z, Song W, Wang H, Wei R. Deformation properties of silt solidified with a new seu-2 binder. Constr Build Mater. 2019;220:267-77. https://doi.org/10.1016/j.conbuildmat.2019.06.016.
  • 19. ASTM C150. Standard specification for portland cement. USA: ASTM International; 2009.
  • 20. ASTM C618. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. USA: ASTM International; 2022.
  • 21. Huo W, Zhu Z, Zhang J, Kang Z, Pu S, Wan Y. Utilization of opc and fa to enhance reclaimed lime-fly ash macadam based geopolymers cured at ambient temperature. Constr Build Mater. 2021;303: 124378. https://doi.org/10.1016/j.conbuildmat.2021.124378.
  • 22. JC/T 2199. Foaming agents for foamed concrete. Ministry of Industry and Information Technology, People’s Republic of China; 2013.
  • 23. CECS 249. Technical specification for cast-in-situ foamed lightweight soil. China: China Planning Press; 2008.
  • 24. CJJ/T 177. Technical specification for foamed mixture lightweight soil filling engineering. Ministry of Housing and Urban-Rural Development of the People’s Republic of China; 2012.
  • 25. Zhang C, Wang W, Zhu Z, Shao L, Wan Y, Zhang Y. Mechanical and microscopic properties of cement composite expansive soil with graphene oxide: ecofriendly modification material. Int J Geomech. 2023;23(6):4023071. https://doi.org/10.1061/IJGNAI.GMENG-8574.
  • 26. Technical Committee ISO/TC 207, Environmental Management. Environmental management-life cycle assessment-principles and framework. International Organization for Standardization; 2006.
  • 27. Elahi TE, Shahriar AR, Islam MS. Engineering characteristics of compressed earth blocks stabilized with cement and fly ash. Constr Build Mater. 2021;277: 122367. https://doi.org/10.1016/j.conbuildmat.2021.122367.
  • 28. S.A.O.I. National sustainability of construction works, assessment of environmental performance of buildings: calculation method. NSAI; 2011.
  • 29. Chen Y, Guan L, Zhu S, Chen W. Foamed concrete containing fly ash: properties and application to backfilling. Constr Build Mater. 2021;273: 121685. https://doi.org/10.1016/j.conbuildmat.2020.121685.
  • 30. She W, Du Y, Zhao G, Feng P, Zhang Y, Cao X. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds. Constr Build Mater. 2018;170:153-66. https://doi.org/10.1016/j.conbuildmat.2018.02.207.
  • 31. Hsu S, Chi M, Huang R. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Constr Build Mater. 2018;176:250-8. https://doi.org/10.1016/j.conbuildmat.2018.05.060.
  • 32. Amiri M, Sanjari M, Porhonar F. Microstructural evaluation of the cement stabilization of hematite-rich red soil. Case Stud Constr Mater. 2022;16: e935. https://doi.org/10.1016/j.cscm.2022.e00935.
  • 33. Ma JT, Wang DG, Zhao SB, Duan P, Yang ST. Influence of particle morphology of ground fly ash on the fluidity and strength of cement paste. Materials. 2021;14(2):283. https://doi.org/10.3390/ma14020283.
  • 34. Huo W, Zhu Z, Sun H, Gao Q, Zhang J, Wan Y, Zhang C. Reaction kinetics, mechanical properties, and microstructure of nano-modified recycled concrete fine powder/slag based geopolymers. J Clean Prod. 2022;372: 133715. https://doi.org/10.1016/j.jclepro.2022.133715.
  • 35. Ahmad MR, Chen B, Yu J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Compos B Eng. 2019;168:204-17. https://doi.org/10.1016/j.compositesb.2018.12.065.
  • 36. Mo L, Lv L, Deng M, Qian J. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste. Cem Concr Res. 2018;111:116-29. https://doi.org/10.1016/j.cemconres.2018.06.003.
  • 37. Quang ND, Chai JC. Permeability of lime- and cement-treated clayey soils. Can Geotech J. 2015;52(9):1221-7. https://doi.org/10.1139/cgj-2014-0134.
  • 38. Teixeira ER, Mateus R, Camoes AF, Braganca L, Branco FG. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J Clean Prod. 2016;112:2221-30. https://doi.org/10.1016/j.jclepro.2015.09.124.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f140bf94-6634-462a-882f-9eb42a6a759b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.