PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normatywna ilość powietrza do wentylacji sali lekcyjnej a możliwości infiltracji powietrza przez okna

Autorzy
Identyfikatory
Warianty tytułu
EN
The Standard Amount of Ventilation Air for the Classroom and the Possibility of Air Infiltration Through Windows
Języki publikacji
PL
Abstrakty
PL
W Polsce w ostatnich latach widoczna jest tendencja do hermetyzacji budynków. Dotyczy to zarówno budynków starszych poddawanych rewitalizacji, jak i nowych lub termomodernizowanych. Sprzyja temu między innymi wymiana okien na zbyt szczelne w istniejących obiektach. Przy występujących w przeważającej części budynków edukacyjnych systemach wentylacji naturalnej (grawitacyjnej) stosowanie nadmiernie szczelnych okien ogranicza w znaczącym stopniu napływ powietrza z zewnątrz do pomieszczeń. Badaniu pod tym kątem poddano pełną miejską zbiorowość statystyczną 50 budynków szkół w Częstochowie. W przeważającej części okna w tych budynkach były w złym lub bardzo złym stanie technicznym i charakteryzowały się dużą nieszczelnością. Z uwagi na swoje wady są one źródłem nadmiernych strat ciepła z ogrzewanych pomieszczeń. Okazuje się jednak, że znaczna nieszczelność okien (wsp. infiltracji a na poziomie 6-7 m3/(m·h·daPa2/3)) jest niezbędna do stosunkowo poprawnego funkcjonowania wentylacji naturalnej i napływu odpowiedniej ilości powietrza wentylacyjnego do sal lekcyjnych, w których przebywają uczniowie. Niestety po wymianie okien na nowe i braku ingerencji w system wentylacji można spodziewać się znacznego pogorszenia warunków przebywania w salach lekcyjnych, przede wszystkim z uwagi na niespełnianie wymagania dostarczania odpowiedniej ilości powietrza wentylacyjnego.
EN
In the last few years in Poland there has been a tendency towards air-tight sealing of buildings. This phenomenon can be seen both in older buildings being refurbished as well as in new or thermally-upgraded ones. The factor contributing to this situation is the use of excessively air-tight windows when replacing old ones in existing buildings. Since majority of educational buildings are equipped with a natural (gravity) ventilation systems, the use of excessively air-tight windows significantly reduces the inflow of fresh air into the rooms. A complete statistical urban population of 50 school buildings in the town of Czestochowa have been examined from this point of view. In the majority of cases windows in those buildings were in a bad or very bad technical condition and their air-permeability was very high. Their defects cause excessive heat losses from heated rooms. It turns out, however, that high air-permeability of windows (rate of outdoor air leakage at the level of 6-7 m3/(m·h·daPa2/3)) is necessary for relatively proper functioning of natural ventilation and sufficient inflow of fresh air into the classrooms in which students spend a lot of time. Unfortunately, as a result of replacement of old windows with new ones and of failure to make any changes in the ventilation system, a considerable deterioration of microclimate in classrooms can be expected, especially due to non-compliance with the requirements related to he supply of sufficient amount of fresh air.
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
autor
  • Politechnika Częstochowska, Wydział Inżynierii Środowiska i Biotechnologii
Bibliografia
  • [1] Besler G.J., M. Besler. 2007. „Climate, Health and Energy 2007". Heating sector, Heating and Ventilation (11): 4-7.
  • [2] Bogdan A. 2009.: „Thermal comfort in public buildings - the legal status and the reality". Heating sector, Heating and Ventilation (2): 39-40.
  • [3] Clements-Croome D.J., H.B. Awbi., Z. Bako-Biro., N. Kochhar., M. Williams. 2008. „Ventilation rates in schools. Building and Environment (43): 362-367.
  • [4] Corgnati S.P., V. Corrado, M. Filippi. 2008. „A method for heating consumption assessment in existing buildings: A field survey concerning 120 Italian schools". Energy and Buildings (40): 801-809.
  • [5] Corgnati S.P., M. Filippi., S. Viazzo. 2007. „Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort". Building and Environment (42): 951-959.
  • [6] Ferdyn-Grygierek J. 2005. „Energy efficiency of heating and ventilation in the modernized school buildings". Heating sector, Heating and Ventilation (10): 28-31.
  • [7] Filippin C. 2000. „Benchmarking the energy efficiency and green-house gases emissions of school buildings in central Argentina". Building and Environment (35): 407-414.
  • [8] Flatheim G., I. Araas. 1992. „Indoor environment in school - a cammon responsibility". Byggherren (7/8): 12-13.
  • [9] Freemeteo: „Website of meteorological data derived from the Polish meteorological stations IMGW. http:// freemeteo.com /weatherhi-story/czestochowa.
  • [10] Goyal R., M. Khare. 2009.: „Indoor-outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway". Atmospheric Environment (43): 6026-6038
  • [11] Hwang R.-L., T.-P Lin., Ch.-P Chen., N.-J Kuo. 2009. „Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan". International Journal of Biometeorology (53): 189-200.
  • [12] Jenkins D.P., A.D. Peacock., P.F.G. Banfill. 2009. „Will future low-carbon schools in the UK have an over heating problem?" Building and Environment (44): 490-501.
  • [13] Klemm K. 2007. „Wind flow in the complex buildings' structures and heat losses of the buildings. Energy and Building" (3): 16-22.
  • [14] Lappalainen S., E. Käkönen, P. Loikkanen., E. Palomäki., O. Lindroos., K. Reijula. (2001). „Evaluation of priorities for repairing in moisture-damaged school buildings in Finland". Building and Environment (36): 981-986.
  • [15] Laskowski L. 2005. „Thermal protection and building energy performance". Publishing House - Warsaw University of Technology. Warsaw.
  • [16] Laskowski L. 2007. „Quality assessment of windows energy performance. Part One: Theoretical basis and algorithm for calculation. Heating sector, Heating and Ventilation (6): 13-18.
  • [17] Lis A. 2005. „Analysis of factors affecting the thermal indoor climate elements." Building Physics in Theory and Practice (1): 256-264.
  • [18] Lis P. 2005. „Statistical characteristics of thermal insulation of selected external partitions in school buildings." Heating sector, Heating and Ventilation (5 ): 22-25.
  • [19] Lis P. 2008. „Heat losses through the windows and ventilation in educational buildings. Building Physics in Theory and Practice (3): 71-76.
  • [20] Lis P., M. Janik. 2014. „Natural ventilation of classrooms in relation to air-tightness of window". W: Nowoczesne rozwiązania w inżynierii i ochronie środowiska. Praca zbiorowa. Wydawnictwo Instytutu Klimatyzacji i Ogrzewnictwa Wydziału Inżynierii Środowiska Politechniki Wrocławskiej, Wrocław 2014, s. 123-128, ISBN 978-83-929704-7-7.
  • [21] Meklin T., T. Reponen, M. Toivola, V. Koponen, T. Husman, A. Hyvärinen, A. Nevalainen. 2002. „Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types". Atmospheric Environment (36): 6031-6039.
  • [22] Mumovic D., J. Palmer, M. Davies, M. Orme, I. Ridley, T. Oreszczyn, C. Judd , R. Critchlow, R. Medina, G. Pilmoor, C. Pearson, P. Way. 2009. „Winter indoor air quality, thermal comfort and acoustic performance of newly built secondary schools in England". Building and Environment (44): 1466-1477.
  • [23] Nantka M. B. 2004. „Relations between the windows tightness and realization of the natural ventilation tasks in multi-family buildings". Heating sector, Heating and Ventilation (1): 21-24; (2): 21-24.
  • [24] Nicol J.F., M.A. Humphreys. 2002: „Adaptive thermal comfort and sustainable thermal standards for buildings." Energy and buildings (34): 563-572.
  • [25] Ooi P. L., K. T. Goh. 1997. „Sick building syndrome - an emerging stress - related disorder". International Journal of Epidemiology (26): 1243-1249.
  • [26] Olesen B.W. 2007. „The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings". Energy and Buildings (39): 740-749.
  • [27] Peeters L., R. De Dear, J. Hensen, W. D'haeseleer W. 2009. „Thermal comfort in residential buildings: Comfort values and scales for building energy simulation". Applied Energy (86): 772-780.
  • [28] Pełech A., Szczęśniak S. 2009. „Microclimate and air quality in ventilated rooms and the intensity of air exchange". Heating sector, Heating and Ventilation (12): 28-33.
  • [29] Prętka I. 2004. „Efficiency analysis of the educational building thermomodernisation". Heating sector, Heating and Ventilation (1): 10-14.
  • [30] Raja I.A., Nicol J.F., McCartney K.J., Humphreys M.A. 2001. „Thermal comfort: use of controls in naturally ventilated buildings". Energy and Buildings (33): 235-244.
  • [31] Roth G. D. 2000. „Weather and Climate". Bertelsmann Media Limited Company. Warsaw.
  • [32] Smedje G., D. Norback, C. Edling. 1007. „Subjective indoor air quality in schools in relation to exposure". Indoor Air (7): 143-150.
  • [33] Smedje G., D. Norback, C. Edling.1997. „Asthma among secondary schoolchildren in relation to the school environment." Clinical and Experimental Allergy (27): 1270-1278.
  • [34] Sobczyk M. 2009. „Statistics". PWN, Warsaw.
  • [35] Sowa J.: „Ventilation and air quality in school buildings. Heating sector, Heating and Ventilation 3 (2002), pp. 24-29.
  • [36] Wench G. P., B. Byort. 1083. „Energy saving in the buildings. Strategy of microclimate project. Energy Conserwation in the Built Environment. The Construction Press. Moscow 1983, pp. 206-219.
  • [37] Wheeler A. E. 1992. „Energy conserwation and acceptable indoor air quality in the classroom". ASHRAE Journal (34): 1-26.
  • [38] Wilczyński J. „The climatic conditions of the Czestochowa city." Manuscript. Czestochowa 1996, with later additions to 2010.
  • [39] Wilson S.: „Sick buildings". The Architect’s Journal 6 (1993), pp. 37-40.
  • [40] Wolski L., A. Kamiński. 2009. „Evaluation of indoor air quality in the classrooms based on CO, criterion". Energy and Building (9) : 6-8.
  • [41] Zeiler W., G. Boxem. 2009. „Effects of thermal activated building systems in schools on thermal comfort in winter". Building and Environment (44) : 2308-2317.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f13ff495-18c4-457d-8d52-e733b82b7d8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.