PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nitrate Reductase Activity in Eucalyptus urophylla and Khaya senegalensis Seedlings: Optimization of the in vivo Assay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrate assimilation in the plant cell is mainly regulated by the enzyme nitrate reductase (EC 1.6.6.1), which catalyzes the nitrate to nitrite reduction. Nitrate reductase activity (NRA) is measured at the major nitrate reduction site, which can be the root or shoot, depending on the species. The in vivo assay has often been used for NRA measurement, and protocol also usually varies with the species. The goals of this study were: (1) to identify the major nitrate reduction site in seedlings of two tree species, Eucalyptus urophylla and Khaya senegalensis, and (2) to optimize the in vivo nitrate reductase assay at the major nitrate reduction site in these species. Healthy seedlings aged 180 and 160 days, respectively, were selected for NRA measurement in fully expanded leaves and main root. After identifying the main nitrate reduction site of each species, the effects of variations in temperature, nitrate concentration and pH in the incubation medium were assessed. The results showed that the leaf and the root are the major nitrate reduction site of Eucalyptus urophylla and Khaya senegalensis, respectively. The optimal conditions for the in vivo assay in the leaf were 35 °C, KNO3 100 mM, and pH 7.0, whereas for the root they were 30 °C, KNO3 100 mM, and pH 7.5.
Rocznik
Strony
204--211
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
  • Departament of Crop and Animal Sciences, State University of Southwestern Bahia (UESB), P.O. Box 95, Vitória da Conquista, 45031-900, Bahia, Brazil
Bibliografia
  • 1. Al Gharbi A., Hipkin C.R. 1984. Studies on nitrate reductase in British angiosperms. I. Comparison of NR in ruderal woodland edge and woody species. New Phytologist, 97, 629‒639. https://doi.org/10.1111/j.1469-8137.1984.tb03627.x
  • 2. Andrews M. 1986. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant, Cell and Environment, 9, 511‒519. https://doi.or/10.1111/1365-3040.ep11616228
  • 3. Arora V., Ghosh M.K., Singh P., Gangopadhyay G. 2018. Light regulation of nitrate reductase activity in the leaves of mulberry. Indian Journal of Biochemistry and Biophysics, 55, 62‒66.
  • 4. Beevers I., Hageman R.H. 1969. Nitrate reduction in higher plant. Annual Review of Plant Physiology, 20, 495‒522.
  • 5. Bowsher C.G., Hucklesby D.P., Emes M.J. 1989. Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta, 177, 359‒366. https://doi.org/10.1007/BF00403594
  • 6. Brunetti N., Hageman R.H. 1976. Comparison of in vivo and in vitro assays of nitrate reductase in wheat (Triticum aestivum L.) seedlings. Plant Physiology, 58, 583‒587.
  • 7. Cairo P.A.R., Oliveira L.E.M., Delú-Filho N. 1994. Determinação das condições ótimas para o ensaio in vivo da redutase do nitrato em algumas espécies arbóreas. Revista Árvore, 18, 87‒95.
  • 8. Carelli M.L.C., Fahl J.I. 1991. Distribuição da assimilação do nitrato e da matéria seca em plantas jovens de café cultivadas em diferentes níveis de nitrogênio. Bragantia, 50, 29‒37.
  • 9. Cazetta J.O., Vilella L.C.V. 2004. Nitrate reductase activity in leaves and stems of tanner grass ( Brachiaria radicans Napper). Scientia Agricola, 61, 640‒648. https://doi.org/10.1590/S0103-90162004000600012
  • 10. Crafts-Brandner S.J., Harper J.E. 1982. Nitrate reduction by roots of soybean (Glycine max [L.] Merr.) seedlings. Plant Physiology, 69, 1928‒1303.
  • 11. Delaire M., Mauget J.-C., Beaujard F. 2014. Evidence for a strong correlation between season- dependent nitrate and potassium uptake in two deciduous trees. Trees, 28, 769‒776. https://doi.org/10.1007/s00468-014-0990-5
  • 12. Delú-Filho N., Oliveira L.E.M., Alves J.D. 1998. Atividade da redutase do nitrato em plantas jovens de seringueira (Hevea brasiliensis Muell. Arg): Otimização das condições de ensaio e ritmo circadiano. Revista Árvore, 21, 329‒336.
  • 13. Dovis V.L., Hippler F.W.R., Silva K.I., Ribeiro R.V., Machado E.C., Mattos Jr D. 2014. Optimization of the nitrate reductase activity assay for citrus trees. Brazilian Journal of Botany, 37, 383‒390. https://doi.org/10.1007/s40415-014-0083-0
  • 14. Fernandes M.S., Rossiello R.O.P. 1995. Mineral nitrogen in plant physiology and plant nutrition. Critical Review in Plant Sciences, 14, 111‒148. https://doi.org/10.1080/07352689509701924
  • 15. Ferreira D.F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039‒1042. https://doi.org/10.1590/S1413-70542011000600001
  • 16. Granger L., Kasel S., Adams M.A. 1994. Tree decline in southeastern Australia: Nitrate reductase activity and indications of unbalanced nutrition in Eucalyptus ovata (Labill.) and E. camphora (R.T. Baker) communities at Yellingbo, Victoria. Oecologia, 98, 221‒228. https://doi.org/10.1007/BF00341475
  • 17. Guimarães M.M.C., Cairo P.A.R., Neves O.S.C. 2014. Crescimento de Eucalyptus urophylla em meio hidropônico com diferentes proporções de nitrato e amônio. Floram, 21, 52‒61. http://dx.doi.org/10.4322/floram.2014.011
  • 18. Hawkesford W., Horst M., Kichey T., Lambers H., Schjoerrin J., Møller I.S., White P. 2012. Functions of macronutrients. In: Marschner P. (org.). Marschner’s mineral nutrition of higher plants, 135‒189. Academic Press, London. https://doi.org/10.1016/B978-0-12-384905-2.00006-6
  • 19. Hewitt E.J., Hucklesby D.P., Mann A.F., Notton B.A., Rucklidge G.I. 1978. Regulation of nitrate assimilation in plants. In: Hewitt E.J., Cutting C.V. (eds.). Nitrogen assimilation of plants, 255‒287. Academic Press, New York.
  • 20. Jaworski E.G. 1971. Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43, 1274‒1279.
  • 21. Lee H.J., Titus J.S. 1992. Factors affecting the in vivo nitrate reductase assay form MM106 apple trees. Communications in Soil Science and Plant Analysis, 23, 981‒991.
  • 22. Lee J.A., Stewart G.R. 1979. Ecological aspects of nitrogen assimilation. Advances in Botanical Research, 6, 1‒43. https://doi.org/10.1016/S0065-2296(08)60328-6
  • 23. Lee R.B. 1980. Sources of reductant for nitrate assimilation in non-photosynthetic tissue. Plant, Cell and Environment, 3, 65‒90. https://doi.org/10.1111/1365-3040.ep11580887
  • 24. Lillo C. 1983. Studies of diurnal variations of nitrate reductase activity in barley leaves using various assay methods. Physiologia Plantarum, 57, 357‒362.
  • 25. Liu Y., von Wirén N. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany, 68, 2581‒2592. https://doi.org/10.1093/jxb/erx086
  • 26. Mantovani C., Prado R.M., Pivetta K.F.L. 2018. Impact of nitrate and ammonium ratio on nutrition and growth of two epiphytic orchids. Anais da Academia Brasileira de Ciências, 90, 3423‒3431. https://doi.org/10.1590/0001-3765201820171008
  • 27. Meguro N.E., Magalhães A.C. 1982. Atividade da redutase de nitrato em cultivares de café. Pesquisa Agropecuária Brasileira, 17, 249‒257.
  • 28. Miller A.J., Cramer M.D. 2005. Root nitrogen acquisition and assimilation. Plant and Soil, 274, 1‒36. https://doi.org/10.1007/s11104-004-0965-1
  • 29. Mulder E.G., Boxma R., Van Veen W.L. 1959. The effect of molybdenum and nitrogen deficiencies on nitrate reduction in plant tissues. Plant and Soil, 10, 335‒355. https://doi.org/10.1007/bf01666209
  • 30. Nelson D.L., Cox M.M. 2018. Princípios de bioquímica de Lehninger. Artmed, Porto Alegre, Brazil.
  • 31. Nievola C.C., Mercier H. 2001. Variações diurnas da atividade in vivo da redutase do nitrato em abacaxizeiro (Ananas comosus (L.) Merr. -Bromeliaceae). Revista Brasileira de Botânica, 24, 295‒301. https://doi.org/10.1590/S0100-84042001000300008
  • 32. Oliveira L.E.M., Magalhães A.C.N. 1989. Atividade da redutase do nitrato in vivo em folhas de cana-de-açúcar em função das variações nas condições de ensaio. Pesquisa Agropecuária Brasileira, 24, 437‒443.
  • 33. Oliveira M.A.J., Bovi M.L.A., Machado E.C., Rodrigues J.D. 2005. Atividade da redutase de nitrato em mudas de pupunheira (Bactris gasipaes). Ciência Rural, 35, 515‒522. https://doi.org/10.1590/S0103-84782005000300005
  • 34. Pate J.S. 1983. Patterns of nitrogen metabolism in higher plants and their ecological signifcance. In: Lee J.A., McNeill S., Rorison I.H. (eds.). Nitrogen as an ecological factor. Blackwell Scientific Publishing, Oxford, UK; 225‒255.
  • 35. Pokhriyal T.C., Chaukiyal S.P., Singh U. 1995. Eucalyptus and Acacia mixed planting effects on in vivo nitrate reductase activity and biomass production. Journal of Tropical Forest Science, 7, 532‒540.
  • 36. Prakashi S.S., Nair M.S. 1982. Regulation of in vivo assay of nitrate reductase in wheat leaves. Plant Science Lettters, 34, 25‒34.
  • 37. Queiroz C.G.S., Alves J.D., Rena A.B., Cordeiro A.T. 1991. Efeito do cloranfenicol, n-propanol, pH e temperatura sobre a atividade in vivo da redutase do nitrato em cafeeiros jovens. Revista Brasileira de Botânica, 14, 73‒77.
  • 38. Rubio-Asensio J.L., López-Berenguer C., García-de la Garma J., Burger M., Bloom A.J. 2014. Root strategies for nitrate assimilation. In: Morte A., Varma A. (eds.). Root engineering. Springer, Berlin, Heidelberg; 251‒267.
  • 39. Santos L.R.S., Cazetta J.O., Saran L.M., Sanches A. 2014. Otimização da análise da atividade da redutase do nitrato e sua caracterização em folhas de cana-de-açúcar. Pesquisa Agropecuária Brasileira, 49, 384‒394. https://doi.org/10.1590/S0100-204X2014000500008
  • 40. Schräder L.E., Thomas R.J. 1981. Nitrate uptake and reduction in the whole plant. In: Bewley J.D. (ed.). Nitrogen and carbon metabolism, Martinus Nijhoff ‒ Dr. W. Junk Publishers, The Hague – Boston – London; 49‒93.
  • 41. Smirnoff N., Stewart G.R. 1985. Nitrate assimilation and translocation by higher plants: comparative physiology and ecological consequences. Physiologia Plantarum, 64, 133‒140. https://doi.org/10.1111/j.1399-3054.1985.tb02326.x
  • 42. Smirnoff N., Todd P., Stewart G.R. 1984. The occurrence of nitrate reduction in the leaves of woody plants. Annals of Botany, 54, 363‒374. https://doi.org/10.1093/oxfordjournals.aob.a086806
  • 43. Solomonson L.P., Barber M.J. 1990. Assimilatory nitrate reductase: functional properties and regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 225‒253. https://doi.org/10.1146/annurev.pp.41.060190.001301
  • 44. Stewart G.R., Schmidt S. 2002. Evolution and ecology of plant nutrition. In: Press M.C., Scholes J.D., Barker M.G. (eds.). Physiological Plant Ecology: 39th Symposium of the British Ecological Society (Symposia of the British Ecological Society). Cambridge University Press, Cambridge, UK, 91‒114.
  • 45. Subba Rao A., Jha P., Meena B.P., Biswas A.K., Lakaria B.L., Patra A.K. 2017. Nitrogen processes in agroecosystems of India. In: Abrol Y.P., Adhya T.K., Aneja V.P., Raghuram N., Pathak H., Kulshrestha U., Sharma C., Singh B. The Indian nitrogen assessment. Elsevier, Cambridge, UK; 59‒76. https://doi.org/10.1016/b978-0-12-811836-8.00005-7
  • 46. Tanan T.T., Nascimento M.N., Silva A.L., Guimarães D.S., Leite R.S., Pereira L.S., Santos Neto F. 2019. Characterization of nitrate reductase activity (NR) infoliar and radicular tissues of Physalis angulata L.: diurnal variations and protocol optimization. Australian Journal of Crop Science, 13, 1120‒1125. https://doi.org/10.21475/ajcs.19.13.07.p1644
  • 47. Tischner R. 2006. Nitrate uptake and reduction in plants. Journal of Crop Improvement, 15, 53‒95. https://doi.org/10.1300/j411v15n02_03
  • 48. Wallace A., Mueller R.T. 2008. Calcium uptake and distribution in plants. Journal of Plant Nutrition, 2, 247‒256. https://doi.org/10.1080/01904168009362774
  • 49. Warren C.R. 2006. Potential organic and inorganic N uptake by six Eucalyptus species. Functional Plant Biology, 33, 653‒660. https://doi.org/10.1071/fp06045
  • 50. Warren C.R. 2009. Uptake of inorganic and amino acid nitrogen from soil by Eucalyptus regnans and Eucalyptus pauciflora seedlings. Tree Physiology, 29, 401‒409. https://doi.org/10.1093/treephys/tpn037
  • 51. Yao B., Cao J., Zhao C., Rengel Z. 2011. Influence of ammonium and nitrate supply on growth, nitrate reductase activity and N-use efficiency in a natural hybrid pine and its parents. Journal of Plant Ecology, 4, 275‒282. https://doi.org/10.1093/jpe/rtq033
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f13c3cbe-cc9c-47fc-8bf8-26c4a24f6909
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.